| 研究生: |
任沛瑄 Jen, Pei-Hsuan |
|---|---|
| 論文名稱: |
用 Mosapride 作為大鼠肝臟CYP3A 活性探針:與參考探針 Midazolam 之比較 Mosapride as a hepatic CYP3A probe in rats:compared with the reference probe midazolam |
| 指導教授: |
周辰熹
CHOU, CHEN-HSI 鄭靜玲 Cheng, Ching-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學研究所 Institute of Clinical Pharmacy |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | Mosapride 、midazolam 、細胞色素 3A 、體內探針性試藥 、有限採樣法 、相關性比較 |
| 外文關鍵詞: | Mosapride, Midazolam, Cytochrome P450 3A, in vivo probe, limited sampling strategy, in vivo correlation |
| 相關次數: | 點閱:177 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
簡介
Cytochrome P450 (CYP450) 3A酵素在人體及大白鼠中主要分布於肝臟細胞及腸道上皮細胞,在肝臟酵素中佔最大比例,並參與許多物質和藥品的代謝。由於許多藥品會受到CYP3A的影響且酵素本身變異性大,造成相關藥品調整劑量上的困難,因此開發快速檢測且方便使用的探針性試藥來評估酵素在體內代謝活性也慢慢受到許多藥政相關單位的重視,像是美國FDA、歐盟EUFEPS及製藥工業等等。目前最廣為應用之探針性試藥為midazolam,但在來源取得及使用上有其限制。 Mosapride為新一代胃腸蠕動劑,主要經由CYP3A代謝。而在之前本實驗室的相關研究中發現,在大白鼠動物模式中,證實mosapride可作為一可行的CYP3A體內探針性試藥。
研究目的
為了進一步強化mosapride的適用性,本研究利用現行最常使用的midazolam和本實驗室先前已開發之探針性試藥mosapride作體內清除率的相關性比較,並同時驗證先前開發之有限採樣法的可行性。
研究方法
先以靜脈輸注給予大白鼠midazolam (輸注速率:0.02 mg/min),等達到穩定狀態血中濃度(Css)後,停止輸注並靜待2小時以待midazolam由體內洗除,接著於同隻大白鼠以靜脈注射給予mosapride (5 mg/kg),推求其AUC和CL,並分析兩藥間相關性。另外以ketoconazole進行CYP3A酵素的抑制;或dexamethasone進行CYP3A酵素的誘導,同樣也觀察兩藥物在酵素活性調節後之藥動參數相關性的變化。並於動物實驗結束後取其肝臟以西方點墨法分析其CYP3A總含量。
研究結果
本實驗結果再次確認:mosapride在大白鼠體內可反應出肝臟酵素的活性變化,且可利用well-stirred model來加以描述,大白鼠體內清除率與肝臟微粒體中CYP3A2含量呈良好相關(R=0.7929,P<0.001, N=40)。兩CYP3A探針性試藥mosapride與midazolam在同隻大白鼠體內之清除率之間呈統計有顯著意義的正向相關(R = 0.794,P<0.001,N=23),而以有限採樣法所預估之清除率也和midazolam具有良好的一致性(R = 0.854,P<0.001,N=23)。同時當以血漿內主要代謝物des-4-fluoro-benzyl mosapride與mosapride在各個時間點之血中濃度分率對於CYP3A活性的評估,在給藥120分鐘後,此血中濃度分率與肝臟微粒體中CYP3A2含量有顯著相關性(R=0.884,P<0.001,N=17)。
研究結論
以靜脈注射給予mosapride後,mosapride之體內清除率可適當的反應大白鼠體內肝臟CYP3A活性,且其清除率與現行廣為使用之探針性試藥midazolam具有顯著的一致性。本次研究並驗證了本實驗室先前開發之有限採樣法之應用性。結果證明以mosapride作為大白鼠體內CYP3A活性探針性試藥為一個具有來原易取得,易操作且相對節省時間的評估方式。確可在大白鼠上用來評估CYP3A相關的藥物交互作用。
Introduction
Cytochrome P450 3A is one of the most important CYP450 subfamilies because of its large number of xenobiotics and endogenous substrates. Considerable interindividual variability in the expression and activity of CYP3A was proved to be responsible for variability in drug response. The use of selected drugs as “probes” to assess in vivo CYP activity has been the subject of intense interest for over a decade.This approach is suggested by numerous organizations, including the US Food and Drug Administration, European Federation of Pharmaceutical Sciences, the American Association of Pharmaceutical Sciences, and the pharmaceutical industry. Among many CYP3A probes, midazolam is the most accepted CYP3A probe used in human, but it’s use is limited by being a control substance, and it’s assay difficulties. Other probes have similar problems. A more convenient, easy-used, and time-saving CYP3A probe is still required.
Purpose
In this project, mosapride, a new prokinetic agent, was evaluated as an in vivo probe for measuring hepatic CYP3A activity in SD rats to determine whether by the developed limited sampling strategies, it’s clearance could be used to reflect in vivo CYP3A activity. Furthermore, the relationship between the clearance of mosapride and the clearance of midazolam was examined to determine the applicability of mosapride in the CYP3A-related drug-drug interactions, such as under CYP3A induction or inhibition conditions.
Methods
Each male SD rats was first introduced midazolam IV infusion (infusion rate:0.02 mg/min), followed 2-hour midazolam washout period, mosapride was administered to the same rats (5 mg/kg); its plasma concentrations were followed up to 360 minutes. In the CYP3A modulation group, rats received midazolam and mosapride after pretreatment with ketoconazole or dexamethasone. All plasma samples were analyzed by a validated HPLC method. The liver was excised afer in vivo pharmacokinetic experiment for CYP3A2 content measurement.
Results
Mosapride could reflect CYP3A activity through it’s pharmacokinetic parameters, the clearance(CL)decreased from 58.9 to 23.1 mL/min/kg when pretreatment with ketoconazole.On the other hand, the CL increased from 58.9 to 77.4 mL/min/kg when pretreatment with dexamethasone. The same trend were also observed in the CL of midazolam. There was significant concordance between mosapride and midazolam CL(R = 0.794, P<0.001, N=23). Based on the data from limited sampling strategies, mosapride CL still showed strong correlation with midazolam CL.
Conclusion
Strong correlation between the clearances of mosapride and midazolam supports the applicability of mosapride as a probe to assess hepatic CYP3A4 activity in vivo. Mosapride plasma concentration at 120 min after a single IV mosapride dose was proved useful as a single-point determination of plasma clearance which can be reflected the total CYP3A4 activity in vivo
Aarons L, Mandema JW and Danhof M (1991) A population analysis of the pharmacokinetics and pharmacodynamics of midazolam in the rat. J Pharmacokinet Biopharm 19:485-496.
Anzenbacher P and Anzenbacherova E (2001) Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 58:737-747.
Bachmann KA (2002) Genotyping and phenotyping the cytochrome p-450 enzymes. Am J Ther 9:309-316.
Chovan JP, Ring SC, Yu E and Baldino JP (2007) Cytochrome P450 probe substrate metabolism kinetics in Sprague Dawley rats. Xenobiotica 37:459-473.
Davies B and Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093-1095.
Eeckhoudt SL, Horsmans Y and Verbeeck RK (2002) Differential induction of midazolam metabolism in the small intestine and liver by oral and intravenous dexamethasone pretreatment in rat. Xenobiotica 32:975-984.
Frye RF (2004) Probing the world of cytochrome P450 enzymes. Mol Interv 4:157-162.
Fuhr U, Jetter A and Kirchheiner J (2007) Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the "cocktail" approach. Clin Pharmacol Ther 81:270-283.
Fujisawa M, Murata T, Hori M and Ozaki H (2010) The 5-HT4 receptor agonist mosapride attenuates NSAID-induced gastric mucosal damage. J Gastroenterol 45:179-186.
Higashikawa F, Murakami T, Kaneda T, Kato A and Takano M (1999a) Dose-dependent Intestinal and Hepatic First-pass Metabolism of Midazolam, a Cytochrome P450 3A Substrate with Differently Modulated Enzyme Activity in Rats. Journal of Pharmacy and Pharmacology 51:67-72.
Higashikawa F, Murakami T, Kaneda T and Takano M (1999b) In-vivo and in-vitro metabolic clearance of midazolam, a cytochrome P450 3A substrate, by the liver under normal and increased enzyme activity in rats. J Pharm Pharmacol 51:405-410.
Hostler D, Zhou J, Tortorici MA, Bies RR, Rittenberger JC, Empey PE, Kochanek PM, Callaway CW and Poloyac SM (2010) Mild hypothermia alters midazolam pharmacokinetics in normal healthy volunteers. Drug Metab Dispos 38:781-788.
Jan Y-H, Mishin V, Busch CM and Thomas PE (2006) Generation of specific antibodies and their use to characterize sex differences in four rat P450 3A enzymes following vehicle and pregnenolone 16[alpha]-carbonitrile treatment. Archives of Biochemistry and Biophysics 446:101-110.
Johnson DA and Levy BH, 3rd (2010) Evolving drugs in gastroesophageal reflux disease: pharmacologic treatment beyond proton pump inhibitors. Expert Opin Pharmacother 11:1541-1548.
Johnson TN, Tanner MS and Tucker GT (2000) A comparison of the ontogeny of enterocytic and hepatic cytochromes P450 3A in the rat. Biochem Pharmacol 60:1601-1610.
Kobayashi K, Urashima K, Shimada N and Chiba K (2002) Substrate specificity for rat cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat. Biochem Pharmacol 63:889-896.
Krupka E, Venisse N, Lafay C, Gendre D, Diquet B, Bouquet S and Perault MC (2006) Probe of CYP3A by a single-point blood measurement after oral administration of midazolam in healthy elderly volunteers. Eur J Clin Pharmacol 62:653-659.
Kurosawa S, Uchida S, Ito Y and Yamada S (2009) Effect of ursodeoxycholic acid on the pharmacokinetics of midazolam and CYP3A in the liver and intestine of rats. Xenobiotica 39:162-170.
Lai L, Hao H, Wang Q, Zheng C, Zhou F, Liu Y, Wang Y, Yu G, Kang A, Peng Y, Wang G and Chen X (2009) Effects of short-term and long-term pretreatment of Schisandra lignans on regulating hepatic and intestinal CYP3A in rats. Drug Metab Dispos 37:2399-2407.
LeCluyse EL (2001) Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics. Chem Biol Interact 134:283-289.
Lee LS, Bertino JS, Jr. and Nafziger AN (2006) Limited sampling models for oral midazolam: midazolam plasma concentrations, not the ratio of 1-hydroxymidazolam to midazolam plasma concentrations, accurately predicts AUC as a biomarker of CYP3A activity. J Clin Pharmacol 46:229-234.
Lin JH, Chiba M, Chen IW, Nishime JA, deLuna FA, Yamazaki M and Lin YJ (1999) Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 3A [correction of P-450 A] and p-glycoprotein induction. Drug Metab Dispos 27:1187-1193.
Lown KS, Thummel KE, Benedict PE, Shen DD, Turgeon DK, Berent S and Watkins PB (1995) The erythromycin breath test predicts the clearance of midazolam. Clin Pharmacol Ther 57:16-24.
Lowry JA, Kearns GL, Abdel-Rahman SM, Nafziger AN, Khan IS, Kashuba AD, Schuetz EG, Bertino JS, Jr., van den Anker JN and Leeder JS (2003) Cisapride: a potential model substrate to assess cytochrome P4503A4 activity in vivo. Clin Pharmacol Ther 73:209-222.
Lu C and Li AP ( 2010) Enzyme Inhibition in Drug Discovery and Development: The Good and the Bad.
Mandema JW, Sansom LN, Dios-Vieitez MC, Hollander-Jansen M and Danhof M (1991) Pharmacokinetic-pharmacodynamic modeling of the electroencephalographic effects of benzodiazepines. Correlation with receptor binding and anticonvulsant activity. J Pharmacol Exp Ther 257:472-478.
Mandlekar SV, Rose AV, Cornelius G, Sleczka B, Caporuscio C, Wang J and Marathe PH (2007) Development of an in vivo rat screen model to predict pharmacokinetic interactions of CYP3A4 substrates. Xenobiotica 37:923-942.
Martignoni M, Groothuis G and de Kanter R (2006a) Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine. Drug Metab Dispos 34:1047-1054.
Martignoni M, Groothuis GM and de Kanter R (2006b) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875-894.
Mostile G and Jankovic J (2009) Treatment of dysautonomia associated with Parkinson's disease. Parkinsonism Relat Disord 15 Suppl 3:S224-232.
Mushiroda T, Douya R, Takahara E and Nagata O (2000) The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate. Drug Metab Dispos 28:1231-1237.
Nam JS, Nam JY, Yoo JS, Cho M, Park JS, Ahn CW, Cha BS, Lee EJ, Lim SK, Kim KR and Lee HC (2010) The effect of mosapride (5HT-4 receptor agonist) on insulin sensitivity and GLUT4 translocation. Diabetes Res Clin Pract 87:329-334.
Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE and Zeldin DC (2006) The human intestinal cytochrome P450 "pie". Drug Metab Dispos 34:880-886.
Pentikainen P, Valisalmi L, Himberg J and Crevoisier C (1989) Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. J Clin Pharmacol 29:272-277.
Ren X, Mao X, Cao L, Xue K, Si L, Qiu J, Schimmer AD and Li G (2009) Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo. Eur J Pharm Sci 36:401-411.
Sakashita M, Mizuki Y, Hashizume T, Yamaguchi T, Miyazaki H and Sekine Y (1993a) Pharmacokinetics of the gastrokinetic agent mosapride citrate after intravenous and oral administrations in rats. Arzneimittelforschung 43:859-863.
Sakashita M, Yamaguchi T, Miyazaki H, Sekine Y, Nomiyama T, Tanaka S, Miwa T and Harasawa S (1993b) Pharmacokinetics of the gastrokinetic agent mosapride citrate after single and multiple oral administrations in healthy subjects. Arzneimittelforschung 43:867-872.
Schmitt C, Hofmann C, Riek M, Patel A and Zwanziger E (2009) Effect of saquinavir-ritonavir on cytochrome P450 3A4 activity in healthy volunteers using midazolam as a probe. Pharmacotherapy 29:1175-1181.
Sekiguchi N, Kato M, Takada M, Watanabe H, Higashida A, Sakai S, Ishigai M and Aso Y (2008) In vivo approach for the evaluation of mechanism-based inhibition of cytochrome P450 3A in rats. Xenobiotica 38:368-381.
Streetman DS, Bertino JS, Jr. and Nafziger AN (2000) Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 10:187-216.
Tateishi T, Watanabe M, Nakura H, Asoh M, Shirai H, Mizorogi Y, Kobayashi S, Thummel KE and Wilkinson GR (2001) CYP3A activity in European American and Japanese men using midazolam as an in vivo probe. Clin Pharmacol Ther 69:333-339.
Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Hartwell PS, Raisys VA, Marsh CL, McVicar JP, Barr DM and et al. (1994) Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 271:549-556.
Tomlinson ES, Maggs JL, Park BK and Back DJ (1997) Dexamethasone metabolism in vitro: species differences. J Steroid Biochem Mol Biol 62:345-352.
Wilkinson GR (1996) Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans. J Pharmacokinet Biopharm 24:475-490.
Wong SL, Goldberg MR, Ballow CH, Kitt MM and Barriere SL (2010) Effect of Telavancin on the pharmacokinetics of the cytochrome P450 3A probe substrate midazolam: a randomized, double-blind, crossover study in healthy subjects. Pharmacotherapy 30:136-143.
Xiaohong Suna, Lili Niua, Xiaoqin Lia, Lua X and Li F (2009) Characterization of metabolic profile of mosapride citrate in rat and identification of two new metabolites: Mosapride N-oxide and morpholine ring-opened mosapride by UPLC–ECI-MS/MS. Journal of Pharmaceutical and Biomedical Analysis 50:27-34.
Zhou SF (2008) Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 9:310-322.
官玫仙 (2007) Cisapride作為大白鼠體內CYP3A活性探針性試藥之可行性. 國立成功大學臨床藥學所95級碩士論文.
張雅雯 (2008) Mosapride作為大白鼠體內CYP3A活性探針性試藥之可行性. 國立成功大學臨床藥學所96級碩士論文.
楊淑珍 (2005) 體外CYP3A活性探針性試藥之開發:Cisapride與Delavirdine. 國立成功大學臨床藥學所93級碩士論文.
魏敬云 (2009) 有限採樣法預測 CYP3A 探針藥物mosapride 在大鼠體內之濃度曲線下面積. 國立成功大學臨床藥學所97級碩士論文.
校內:2020-12-31公開