| 研究生: |
廖家駿 Liao, Chia-Chun |
|---|---|
| 論文名稱: |
以新式的靜電紡絲技術誘導奈米纖維異向性結構性質之研究 Stretching-induced the Anisotropic Structural Properties of Polymer Nanofibers by Novel Electrospinning Technique |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 共同指導教授: |
王振乾
Wang, Cheng-Chien |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 奈米纖維 、離心場 、靜電場 、溶液構形 、射流行為 、纖維構形 |
| 外文關鍵詞: | nanofiber, centrifugal field, electrostatic field, solution conformation, jet behavior, nanofiber conformation |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米纖維 (nanofibers) 為直徑小於 100 nm 的纖維,而奈米纖維獨特的微小特性、表面效應,具有不同於一般纖維的力學、光學、熱學、磁學及生物活性等性能,故奈米纖維賦予紡織產品具有新功能。因此,在能源與電子、環境工程與生物科技、防禦與安全、生醫工程、加工及特性等相關研究,奈米纖維皆佔有一席之地。而靜電紡絲 (electrospinning) 技術是現今製備奈米纖維的核心技術之ㄧ,其透過帶有靜電場的黏彈性射流不斷地延伸及薄化,最終固化形成奈米纖維。然而,直至目前為止,利用傳統的靜電紡絲技術仍舊無法同時提昇奈米纖維的單軸向排列、鏈段構形、分子位向性、結晶度、硬度與彈性模數等。為了改善這些問題,本實驗室將外加離心場 (1,800 rpm) 導入傳統的靜電紡絲技術中,有效地將離心場 (centrifugal field) 與靜電場 (electrostatic field) 結合,不僅能移除紡絲過程中射流所產生的彎曲不穩定性,更能進ㄧ步提昇奈米纖維的單軸向排列、鏈段構形、分子位向性、結晶度、硬度與彈性模數等。此外,目前大多數的文獻皆著重於系統、操作與環境變數的調整來改變奈米纖維的形態或直徑,僅有極少數的文獻深入地去探討溶液構形、射流行為與纖維構形。
本文首先以聚碳酸酯 (PC) 溶液來進行電紡絲實驗,並研究溶液構形對 PC 奈米纖維性質之影響。由 NMR 可以發現 PC 溶解在 THF-d8 氘代溶液中的作用時間 (τc = 9.3 ns (methyl) / 15.3, 15.8 ns (phenyl ring)) 高於 CH2Cl2-d2 (τc = 8.5 ns (methyl) / 13.1, 13.4 ns (phenyl ring)) 及 CHCl3-d1 (τc = 7.8 ns (methyl) / 10.2, 10.7 ns (phenyl ring)) 氘代溶液。實驗結果證實當 PC 溶解在 THF-d8 氘代溶液中,甲基 (碳) 與苯環 (碳) 水平翻轉的速度是最緩慢的。藉由 DLS 可以證實 PC/THF (Rh = 1.5 nm) 溶液中,高分子與溶劑間的作用力較弱,分子鏈段較偏向緊密的構形;相反的,在 PC/CH2Cl2 (Rh = 9.2 Å) 及 PC/CHCl3 (Rh = 7.9 Å) 溶液中,高分子與溶劑間的作用力較強,分子鏈段較偏向鬆散的構形。由此可以得知當溶劑急速揮發的時候,緊密的構形會形成鏈摺疊或鏈聚集,這種現象便能誘導結晶的形成。對於聚乳酸 (PLA) 的溶液構形,也如同上述結果,可成功地誘導 PLA 產生結晶。
另一方面,傳統的靜電紡絲技術僅具有軸向的拉伸應力,而新式的靜電紡絲技術多了切線方向的拉伸應力,可提昇射流的瞬時速度 (υ = r × ω = 15.08 m/s) 及切線加速度 (ac = √(ax2 + ay2) = r × ω2 = 2.84×103 m/s2)。故藉由 Re 與 We numbers 可以得知慣性力/黏彈力與慣性力/表面張力的比值,及其對射流曲率半徑的影響;另藉由 Pe 與 ε numbers 可以得知電對流/電傳導與靜電力/慣性力的比值,對射流長度的影響;最後,由 Oh 與 Π1 numbers 可以得知黏彈力/表面張力與靜電力/黏彈力的比值,推得 Taylor cone 的形態變化。本文研究結果顯示,當 Re>6.57×10-2、We>4.74、Pe>2.20×10-2、ε>3.03×10-3、Π1>4.39×10-6、Oh>33.14,聚碳酸酯射流具有較強的慣性力 (曲率半徑較大)、電對流 (射流長度較長) 與黏彈力 (Taylor cone 較穩定),進而提昇射流的拉伸應力與延伸速度。同時,對於聚乳酸與聚丙烯腈奈米纖維的射流行為,也有相似的結果。
本研究在外加離心場 (1,800 rpm) 的存在下,藉由最佳的操作條件 (η = 48.1 cp at 14 wt% PC/THF, FR = 0.25 mL/hr, WD = 20 cm, EF = 25 kV, and T = 25°C),可以大幅提昇其鏈段構形 (67%) 與結晶度 (6.5%),進而製備出高硬度 (0.52 GPa) 與高強度 (7.11 / 5.13 GPa) 之聚碳酸酯奈米纖維。其次,藉由最佳的操作條件 (η = 35.5 cp at 6.67 wt% PLA/CHCl3/THF, FR = 0.25 mL/hr, WD = 20 cm, and EF = 30 kV),可以大幅提昇其鏈段構形 (57%)、分子位向性 (D = 1.89) 與結晶度 (37%),進而製備出高硬度 (0.26 GPa) 與高強度 (2.64 / 3.30 GPa) 之聚乳酸奈米纖維。另藉由最佳的操作條件 (η = 229 cp at 12 wt% PAN/DMF, FR = 0.25 mL/hr, WD = 20 cm, and EF = 30 kV),可以大幅提昇其分子位向性 (D = 0.78; f = 0.21) 與比結晶度 (34%),進而製備出高硬度 (0.43 GPa) 與高強度 (6.29 / 4.55 GPa) 之聚丙烯腈奈米纖維。
Nanofibers are referred to the fibers with diameters less than 100 nm. Because it’s small features and surface effects, particular properties of mechanical, optical, thermal, magnetic, and biological activity, nanofibers can give the textile products with the novelty performance. Thus, nanofibers are widely applied into the energy and electronics, environmental engineering and biotechnology, defense and security, bioengineering, processing and characterization. Electrospinning is still the cone technology for fabricating the nanofibers now; however, the conventional electrospinning technique can not simultaneously enhance the uniaxially alignment, conformation, molecular orientation, crystallinity, hardness, and elastic modulus of nanofibers. To solve above problems, an additional centrifugal field (1,800 rpm) was applied in the conventional electrospinning technique in our laboratory. The combination of centrifugal field and electrostatic field not only can remove the bending instability, but also can simultaneously enhance the uniaxially alignment, conformation, molecular orientation, crystallinity, hardness, and elastic modulus of nanofibers. Furthermore, to change the morphology and diameter of nanofibers, most of the literatures are still focused on the system, operational, and environmental variables; only a fewer literatures are deeply investigated the solution conformation, jet behavior, and nanofiber conformation.
First, this study was used the polycarbonate (PC) solution to perform the electrospinning experiments, and investigate the solution conformation for the effects of polycarbonate nanofibers. Nuclear magnetic resonance (NMR T1) showed that the correlation time (τc = 9.3 ns (methyl) / 15.3, 15.8 ns (phenyl ring)) when the PC dissolved in THF-d8 solution was higher than the CH2Cl2-d2 (τc = 8.5 ns (methyl) / 13.1, 13.4 ns (phenyl ring)) and CHCl3-d1 (τc = 7.8 ns (methyl) / 10.2, 10.7 ns (phenyl ring)) solutions. This result demonstrates that the velocity of the horizontal flip of the methyl and benzene ring when PC in THF-d8 was the slowest. Dynamic light scattering (DLS) showed that the polymer solvent interaction between PC and THF (Rh = 1.5 nm) was weaker than in the case of CH2Cl2 (Rh = 9.2 Å) and CHCl3 (Rh = 7.9 Å). The PC chains probably adopted a more densely worm-like conformation (or a more compact internal structure) in the THF case. By contrast, the PC chains preferentially adopted a more extended worm-like conformation in CH2Cl2 and CHCl3. Chain collapse and aggregation were probably occurred when the PC/THF solution became more concentrated, and the collapse and aggregation from a more densely worm-like conformation may have induced crystallization. The solution conformation of polylactic acid (PLA) is also similar to the above result; the particular solvent can successfully induce the formations of PLA crystal.
On the other hand, the conventional electrospinning technique only has the stretching force with axial direction, and the novel electrospinning technique has the stretching force with axial and tangent directions. The instantaneous velocity (υ = r × ω = 15.08 m/s) and tangent acceleration (ac = √(ax2 + ay2) = r × ω2 = 2.84×103 m/s2) can be simultaneously enhanced for a viscoelastic jet under the driven of an additional centrifugal field. The changes of curvature radius can be obtained through Re (inertial stress / viscous stress) and We (inertial stress / surface stress) numbers. Subsequently, the changes of jet length can be obtained through Pe (charge convection / charge conduction) and ε (electrostatic stress / inertial stress) numbers. Finally, the changes of Taylor cone can be obtained through Π1 (electrostatic stress / viscous stress) and Oh (viscous stress / surface stress) numbers. The polycarbonate jet has stronger inertial stress, charge convection, and viscous stress when Re > 6.57 × 10-2, We > 4.74, Pe > 2.20 × 10-2, ε > 3.03 × 10-3, Π1 > 4.39 × 10-6, and Oh > 33.14. The stretching force and extension speed will be substantially promoted under the driven of stronger inertial stress, charge convection, and viscous stress. Simultaneously, the jet behavior of polylactic acid and polyacrylonitrile are also similar to the above result.
In the presence of an additional centrifugal field, the polycarbonate nanofibers with the superior conformation (67%), crystallinity (6.5%), hardness (0.52 GPa), and elastic modulus (7.11 / 5.13 GPa) can be achieved by the optimal operational conditions (η = 48.1 cp at 14 wt% PC/THF, FR = 0.25 mL/hr, WD = 20 cm, EF = 25 kV, and T = 25°C). Subsequently, the polylactic acid nanofibers with the superior conformation (57%), molecular orientation (D = 1.89), crystallinity (37%), hardness (0.26 GPa), and elastic modulus (2.64 / 3.30 GPa) by the optimal operational conditions (η = 35.5 cp at 6.67 wt% PLA/CHCl3/THF, FR = 0.25 mL/hr, WD = 20 cm, and EF = 30 kV). Finally, the polyacrylonitrile nanofibers with the superior molecular orientation (D = 0.78; f = 0.21), specific crystallinity (34%), hardness (0.43 GPa), and elastic modulus (6.29 / 4.55 GPa) by the optimal operational conditions (η = 229 cp at 12 wt% PAN/DMF, FR = 0.25 mL/hr, WD = 20 cm, and EF = 30 kV).
[1] 劉仲明、郭東瀛 (民 91)。競逐原子世界 奈米技術與產業發展系列。國科會科資中心 (編號:STIC-RPR-091-10)。臺北市:經濟部。
[2] 吳大誠、杜仲良、高緒珊、張勁燕 (民 93)。奈米纖維。臺北市:五南圖書出版股份有限公司。
[3] 吳其章 (民 98)。奈米纖維發展趨勢分析。財團法人紡織產業綜合研究所 (編號:TTRI-0453-S801(98))。臺北市:經濟部。
[4] Badrossamay, M. R., McIlwee, H. A., Goss, J. A., & Parker, K. K. (2010). Nanofiber assembly by rotary jet-spinning. Nano Letters, 10(6), 2257–2261.
[5] Sarkar, K., Gomez, C., Zambrano, S., Ramirez, M., de Hoyos, E., Vasquez, H., & Lozano, K. (2010). Electrospinning to forcespinningTM. Materials Today, 13(11), 12–14.
[6] Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishnab, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253.
[7] Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. Singapore: World Scientific.
[8] Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Polymer, 7(3), 216–223.
[9] Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387–2425.
[10] Gray, S. (1731–1732). A letter concerning the electricity of water, from Mr. Stephen Gray to Cromwell Mortimer, M. D. Secr. R. S. Philosophical Transactions, 37(417–426), 227–260.
[11] Larmor, J. (1898). Note on the complete scheme of electrodynamic equations of a moving material medium, and on electrostriction. Proceedings of the Royal Society of London, 63(389–400), 365–372.
[12] Cooley, J. F. (1902). Apparatus for electrically dispersing fluids. U.S. Patent No. 692,631.
[13] Formhals, A. (1934). Process and apparatus for preparing artificial threads. U.S. Patent No. 1,975,504.
[14] Formhals, A. (1939a). Method and apparatus for the production of artificial fibers. U.S. Patent No. 2,158,416.
[15] Formhals, A. (1939b). Method and apparatus for spinning. U.S. Patent No. 2,160,962.
[16] Taylor, G. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 280(1382), 383–397.
[17] Taylor, G. (1966). Studies in electrohydrodynamics: I. The circulation produced in a drop by electrical field. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 291(1425), 159–166.
[18] Taylor, G. (1969). Electrically driven jets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 313(1515), 453–475.
[19] Gupta, V. B., & Kothari, V. K. (1997). Manufactured Fibre Technology. London: Chapman and Hall.
[20] Khil, M.-S., Bhattarai, S. R., Kim, H.-Y., Kim, S.-Z., & Lee, K.-H. (2005). Novel fabricated matrix via electrospinning for tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B(1), 117–124.
[21] Baumgarten, P. K. (1971). Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science, 36(1), 71–79.
[22] Lyons, J., Li, C., & Ko, F. (2004). Melt-electrospinning part I: processing parameters and geometric properties. Polymer, 45(22), 7597–7603.
[23] Sanders, J. E., Lamont, S. E., Karchin, A., Golledge, S. L., & Ratner, B. D. (2005). Fibro-porous meshes made from polyurethane micro-fibers: effects of surface charge on tissue response. Biomaterials, 26(7), 813–818.
[24] Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160.
[25] Wongsasulak, S., Kit, K. M., McClements, D. J., Yoovidhya, T., & Weiss, J. (2007). The effect of solution properties on the morphology of ultrafine electrospun egg albumen–PEO composite fibers. Polymer, 48(2), 448–457.
[26] Nie, H., He, A., Jia, B., Wang, F., Jiang, Q., & Han, C. C. (2010). A novel carrier of radionuclide based on surface modified poly(lactide-co-glycolide) nanofibrous membrane. Polymer, 51(15), 3344–3348.
[27] Rujitanaroj, P.-o., Pimpha, N., & Supaphol, P. (2008). Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer, 49(21), 4723–4732.
[28] Jose, M. V., Thomas, V., Dean, D. R., & Nyairo, E. (2009). Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer, 50(15), 3778–3785.
[29] Wang, M., Singh, H., Hatton, T. A., & Rutledge, G. C. (2004). Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer, 45(16), 5505–5514.
[30] Desai, K., Kit, K., Li, J., Michael Davidson, P., Zivanovic, S., & Meyer, H. (2009). Nanofibrous chitosan non-wovens for filtration applications. Polymer, 50(15), 3661–3669.
[31] Anderson, K. D., Lu, D., McConney, M. E., Han, T., Reneker, D. H., & Tsukruk, V. V. (2008). Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control. Polymer, 49(24), 5284–5293.
[32] Modi, S. H., Dikovics, K. B., Gevgilili, H., Mago, G., Bartolucci, S., Fisher, F. T., & Kalyon, D. M. (2010). Nanocomposites of poly(ether ether ketone) with carbon nanofibers: Effects of dispersion and thermo-oxidative degradation on development of linear viscoelasticity and crystallinity. Polymer, 51(22), 5236–5244.
[33] Chronakis, I. S. (2005). Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. Journal of Materials Processing Technology, 167(2–3), 283–293.
[34] Son, W. K., Cho, D., & Park, W. H. (2006). Direct electrospinning of ultrafine titania fibres in the absence of polymer additives and formation of pure anatase titania fibres at low temperature. Nanotechnology, 17(2), 439–443.
[35] Wang, Y., & Santiago-Aviles, J. J. (2004). Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo-organic decomposition process. Nanotechnology, 15(1), 32–36.
[36] Larsen, G., Velarde-Ortiz, R., Minchow, K., Barrero, A., & Loscertales, I. G. (2003). A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol–gel chemistry and electrically forced liquid jets. Journal of the American Chemical Society, 125(5), 1154–1155.
[37] Xu, C. Y., Inai, R., Kotaki, M., & Ramakrishna, S. (2004). Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 25(5), 877–886.
[38] Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. (2002). Electrospinning of collagen nanofibers. Biomacromolecules, 3(2), 232–238.
[39] Kameoka, J., Orth, R., Yang, Y., Czaplewski, D., Mathers, R., Coates, G. W., & Craighead, H. G. (2003). A scanning tip electrospinning source for deposition of oriented nanofibers. Nanotechnology, 14(10), 1124–1129.
[40] Subramanian, A., Vu, D., Larsen, G. F., & Lin, H. Y. (2005). Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. Journal of Biomaterials Science, Polymer Edition, 16(7), 861–873.
[41] Kim, K. W., Lee, K. H., Khil, M. S., Ho, Y. S., & Kim, H. Y. (2004). The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens. Fibers and Polymers, 5(2), 122–127.
[42] Katta, P., Alessandro, M., Ramsier, R. D., & Chase, G. G. (2004). Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Letters, 4(11), 2215–2218.
[43] Dalton, P. D., Klee, D., & Möller, M. (2005). Electrospinning with dual collection rings. Polymer, 46(3), 611–614.
[44] Li, D., Wang, Y., & Xia, Y. (2003). Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters, 3(8) 1167–1171.
[45] Deitzel, J. M., Kleinmeyer, J. D., Hirvonen, J. K., & Beck Tan, N. C. (2001). Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 42(19), 8163–8170.
[46] Dosunmu, O. O., Chase, G. G., Kataphinan, W., & Reneker, D. H. (2006). Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology, 17(4), 1123–1127.
[47] Yarin, A. L., & Zussman, E. (2004). Upward needleless electrospinning of multiple nanofibers. Polymer, 45(9), 2977–2980.
[48] Kakade, M. V., Givens, S., Gardner, K., Lee, K. H., Bruce Chase, D., & Rabolt, J. F. (2007). Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. Journal of the American Chemical Society, 129(10), 2777–2782.
[49] Kongkhlang, T., Tashiro, K., Kotaki, M., & Chirachanchai, S. (2008). Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. Journal of the American Chemical Society, 130(46), 15460–15466.
[50] Saville, D. A. (1997). Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 29, 27–64.
[51] Spivak, A. F., & Dzenis, Y. A. (1998). Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field. Applied Physics Letters, 73(21), 3067–3069.
[52] Hohman, M. M., Shin, M., Rutledge, G., & Brenner, M. P. (2001). Electrospinning and electrically forced jets: I. Stability theory. Physics of Fluids, 13(8), 2201–2220.
[53] Hohman, M. M., Shin, M., Rutledge, G., & Brenner, M. P. (2001). Electrospinning and electrically forced jets: II. Applications. Physics of Fluids, 13(8), 2221–2236.
[54] Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547.
[55] Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Bending instability in electrospinning of nanofibers. Journal of Applied Physics, 89(5), 3018–3026.
[56] Feng, J. J. (2003). Stretching of a straight electrically charged viscoelastic jet. Journal of Non-Newtonian Fluid Mechanics, 116(1), 55–70.
[57] Fridrikh, S. V., Yu, J. H., Brenner, M. P., & Rutledge, G. C. (2003). Controlling the fiber diameter during electrospinning. Physical Review Letteers, 90(14), 144502-1–144502-4.
[58] Spivak, A. F., Dzenis, Y. A., & Reneker, D. H. (2000). A model of steady state jet in the electrospinning process. Mechanics Research Communications, 27(1), 37–42.
[59] Liao, C.-C., Hou, S.-S., Wang, C.-C., & Chen, C.-Y. (2010). Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: The effects of molecular motion and conformation in solutions. Polymer, 51(13), 2887–2896.
[60] Liao, C.-C., Wang, C.-C., Shih, K.-C., & Chen, C.-Y. (2011). Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: effects on conformation, crystallinity, and mechanical properties. European Polymer Journal, 47(5), 911–924.
[61] Liao, C.-C., Wang, C.-C., & Chen, C.-Y. (2011). Stretching-induced crystallinity and orientation of polylactic acid nanofibers with improved mechanical properties using an electrically charged rotating viscoelastic jet. Polymer, 52(19), 4303–4318.
[62] Liao, C.-C., Wang, C.-C., Chen, C.-Y., & Lai, W.-J. (2011). Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties. Polymer, 52(10), 2263–2275.
[63] Kowalewski, T. A., Yarin, A. L., & Błoński, S. (2003, August). Nanofibers by electro-spinning of polymer solution. The 5th Euromech Fluid Mechanics Conference. Symposium conducted at the meeting of the Toulouse, France.
[64] 李復生、殷金柱、魏東煒、崔金華、宋光復 (民 91)。聚碳酸酯應用與合成工藝進展。化工進展,21,395–398。
[65] Krishnappa, R. V. N., Desai, K., & Sung, C. (2003). Morphological study of electrospun polycarbonates as a function of the solvent and processing voltage. Journal of Materials Science, 38(11), 2357–2365.
[66] Tsai, P. P., Chen, W. W., & Roth, J. R. (2004). Investigation of the fiber, bulk, and surface properties of meltblown and electrospun polymeric fabrics. International Nonwovens Journal, 13(3), 17–23.
[67] Viswanathamurthi, P., Bhattarai, N., Kim, H. Y., Cha, D. I., & Lee, D. R. (2004). Preparation and morphology of palladium oxide fibers via electrospinning. Materials Letters, 58(26), 3368–3372.
[68] Shawon, J., & Sung, C. (2004). Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. Journal of Materials Science, 39(14), 4605–4613.
[69] Kattamuri, N., & Sung, C. (2004). Uniform polycarbonate nanofibers produced by electrospinning. Nano Science and Technology Institute, 3, 425–428.
[70] Wei, M., Lee, J., Kang, B., & Mead, J. (2005). Preparation of core-sheath nanofibers from conducting polymer blends. Macromolecular Rapid Communications, 26(14), 1127–1132.
[71] Meechaisue, C., Dubin, R., Supaphol, P., Hoven, V. P., & Kohn, J. (2006). Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. Journal of Biomaterials Science. Polymer Edition, 17(9), 1039–1056.
[72] Wei, M., Kang, B., Sung, C., & Mead, J. (2006). Core-sheath structure in electrospun nanofibers from polymer blends. Macromolecular Materials and Engineering, 291(11), 1307–1314.
[73] Han, X.-J., Huang, Z.-M., He, C.-L., Liu, L., & Wu, Q.-S. (2006). Coaxial electrospinning of PC(shell)/PU(core) composite nanofibers for textile application. Polymer Composites, 27(4), 381–387.
[74] Welle, A., Kröger, M., Döring, M., Niederer, K., Pindel, E., & Chronakis, I. S. (2007). Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials, 28(13), 2211–2219.
[75] Kim, S. J., Nam, Y. S., Rhee, D. M., Park, H.-S., & Park, W. H. (2007). Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane. European Polymer Journal, 43(8), 3146–3152.
[76] Sihn, S., Kim, R. Y., Huh, W., Lee, K.-H., & Roy, A. K. (2008). Improvement of damage resistance in laminated composites with electrospun nano-interlayers. Composites Science and Technology, 68(3–4), 673–683.
[77] Moon, S.-C., & Farris, R. J. (2008). The morphology, mechanical properties, and flammability of aligned electrospun polycarbonate (PC) nanofibers. Polymer Engineering and Science, 48(9), 1848–1854.
[78] Yang, D. Y., Wang, Y., Zhang, D. Z., Liu, Y. Y., & Jiang, X. Y. (2009). Control of the morphology of micro/nanostructures of polycarbonate via Electrospinning. Chinese Science Bulletin, 54(17), 2911–2917.
[79] 楊斌、馬振基 (民 99)。PLA 聚乳酸環保塑膠。臺北市:五南圖書出版股份有限公司。
[80] Wen, X. T., Fan, H. S., Tan, Y. F., Cao, H. D., Li, H., Cai, B., & Zhang, X. D. (2005). Preparation of Electrospun PLA Nanofiber Scaffold and the Evaluation In Vitro. Key Engineering Materials, 288–289(139), 139–142.
[81] Tsuji, H., Nakano, M., Hashimoto, M., Takashima, K., Katsura, S., & Mizuno, A. (2006). Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromolecules, 7(12), 3316–3320.
[82] Ogata, N., Yamaguchi, S., Shimada, N., Lu, G., Iwata, T., Nakane, K., & Ogihara, T. (2007). Poly(lactide) nanofibers produced by a melt-electrospinning system with a laser melting device. Journal of Applied Polymer Science, 104(3), 1640–1645.
[83] Branciforti, M. C., Custodio, T. A., Guerrini, L. M., Avérous, L., & Bretas, R. E. S. (2009). Characterization of nano-structured poly(D,L-lactic acid) nonwoven mats obtained from different solutions by electrospinning. Journal of Macromolecular Science. Part B: Physics, 48(6), 1222–1240.
[84] Wang, C., Chien, H.-S., Yan, K.-W., Hung, C.-L., Hung, K.-L., Tsai, S.-J., & Jhang, H.-J. (2010). Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers. Polymer, 50(25), 6100–6110.
[85] François, S., Sarra-Bournet, C., Jaffre, A., Chakfé, N., Durand, B., & Laroche, G. (2010). Characterization of an air-spun poly(L-lactic acid) nanofiber mesh. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 531–543.
[86] Fundador, N. G. V., Takemura, A., & Iwata, T. (2010). Structural properties and enzymatic degradation behavior of PLLA and stereocomplexed PLA nanofibers. Macromolecular Materials and Engineering, 295(9), 865–871.
[87] Davidson, J. A., Jung, H.-T., Hudson, S. D., & Percec, S. (2000). Investigation of molecular orientation in melt-spun high acrylonitrile fibers. Polymer, 41(9), 3357–3364.
[88] Fennessey, S. F., & Farris, R. J. (2004). Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer, 45(12), 4217–4225.
[89] Xu, Q., Xu, L., Cao, W., & Wu, S. (2005). A study on the orientation structure and mechanical properties of polyacrylonitrile precursors. Polymers Advanced Technology, 16(8), 642–645.
[90] Gu, S. Y., Ren, J., & Wu, Q. L. (2005). Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers. Synthetic Metals, 155(1), 157–161.
[91] An, N., Xu, Q., Xu, L., & Wu, S. (2006). Orientation Structure and Mechanical Properties of Polyacrylonitrile Precursors. Advanced Materals Research, 11–12, 383–386.
[92] Ji, B.-H., Wang, C.-G., & Wang, Y.-X. (2007). Effect of jet stretch on polyacrylonitrile as-spun fiber formation. Journal of Applied Polymer Science, 103(5), 3348–3352.
[93] Wu, S., Zhang, F., Hou, X., & Yang, X. (2008). Stretching-induced orientation for improving the mechanical properties of electrospun polyacrylonitrile nanofiber sheet. Advanced Materials Research, 47–50, 1169–1172.
[94] Hou, X., Yang, X., Zhang, L., Waclawik, E., & Wu, S. (2010). Stretching-induced crystallinity and orientation to improve the mechanical properties of electrospun PAN nanocomposites. Materials and Design, 31(4), 1726–1730.
[95] Liang, Y.-H., Wang, C.-C., & Chen, C.-Y. (2005). The conductivity and characterization of the plasticized polymer electrolyte based on the P(AN-co-GMA-IDA) copolymer with chelating group. Journal of Power Sources, 148(15), 55–65.
[96] Feng, J. J. (2002). The stretching of an electrified non-Newtonian jet: A model for electrospinning. Physics of Fluids, 14(11), 3912–3926.
[97] Helgeson, M. E., & Wagner, N. J. (2007). A correlation for the diameter of electrospun polymer nanofibers. AIChE Journal, 52(1), 51–55.
[98] Meaurio, E., Zuza, E., López-Rodríguez, N., & Sarasua, J. R. (2006). Conformational behavior of poly(L-lactide) studied by infrared spectroscopy. The Journal of Physical Chemistry B, 110(11), 5790–5800.
[99] Lee, S.-H., Tekmen, C., & Sigmund, W. M. (2005). Three-point bending of electrospun TiO2 nanofibers. Materials Science and Engineering: A, 398(1–2):77–81.
[100] Tan, E. P. S., & Lim, C. T. (2004). Physical properties of a single polymeric nanofiber. Applied Physics Letters, 84(9), 1603–1605.
[101] Shin, M. K., Kim, S. I., & Kim, S. J. (2006). Reinforcement of polymeric nanofibers by ferritin nanoparticles. Applied Physics Letters, 88(19), 193901-1–193901-3.
[102] Lawrence, J. G., Berhan, L. M., & Nadarajah, A. (2008). Elastic properties and morphology of individual carbon nanofibers. ACS Nano, 2(6), 1230–1236.
[103] Cheng, Q., Wang, S., & Harper, D. P. (2009). Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy. Composites Part A: Applied Science and Manufacturing, 40(5), 583–588.
[104] Briscoe, B. J., Fiori, L., & Pelillo, E. (1999). Nano-indentation of polymeric surfaces. Journal of Physics D: Applied Physics, 31(19), 2395–2405.
[105] Li, X., Gao, H.-S., Murphy, C. J., & Caswell, K. K. (2003). Nanoindentation of silver nanowires. Nano Letters, 3(11), 1495–1498.
[106] Li, X., Gao, H.-S., Murphy, C. J., & Gou, L. (2004). Nanoindentation of Cu2O nanocubes. Nano Letters, 4(10), 1903–1907.
[107] Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583.
[108] Pharr, G. M., & Bolshakov, A. (2002). Understanding nanoindentation unloading curves. Journal of Materials Research, 17(10), 2660–2671.
[109] Klein, C. A. (1992). Anisotropy of Young's modulus and Poisson's ratio in diamond. Materials Research Bulletin, 27(12), 1407–1414.
[110] Grimsditch, M. H., & Ramdas, A. K. (1975). Brillouin scattering in diamond. Physical Review B, 11(8), 3139–3148.
[111] Hruska, C. K. (1992). Least-squares estimates of the nonlinear constants of piezoelectric crystals. Journal of Applied Physics, 72(6), 2432–2439.
[112] McSkimin, H. J., Andreatch, J. P., & Glynn, P. (1972). The elastic stiffness moduli of diamond. Journal of Applied Physics, 43(3),985–987.
[113] Zouboulis, E. S., Grimsditch, M., Ramdas, A. K., & Rodriguez, S. (1998). Temperature dependence of the elastic moduli of diamond: A Brillouin-scattering study. Physical Review B, 57(5), 2889–2896.
[114] Wenger, M. P. E., Bozec, L, Horton, M. A., & Mesquida, P. (2007). Mechanical properties of collagen fibrils. Biophysical Journal, 93(4), 1255–1263.
[115] Dybal, J., Schmidt, P., Baldrian, J., & Kratochvıl, J. (1998). Ordered Structures in polycarbonate studied by infrared and Raman spectroscopy, wide-Angle X-ray scattering, and differential scanning calorimetry. Macromolecules, 31(19), 6611–6619.
[116] Snyder, R. G. (1967). Vibrational study of the chain conformation of the liquid n-paraffins and molten polyethylene. Journal of Chemical Physics, 47(4), 1316–1359.
[117] Mirau, P. A. (2005). A Practical Guide to Understanding the NMR of Polymers. Wiley-Interscience.
[118] Tsuji, T., Norisuye, T., & Fujita, H. (1975). Dilute solution of bisphenol A polycarbonate. Polymer Journal, 7(5), 558–569.
[119] Berry, G. C., Nomura, H., & Mayhan, K. G. (1967). Dilute solution studies on a polycarbonate in good and poor solvents. Journal of Polymer Science Part B: Polymer Physics, 5(1), 1–21.
[120] Yamakawa, H. (1972). Excluded volume effects and binary cluster integrals in dilute polymer solutions. Pure Applied Chemistry, 31(1–2), 179–199.
[121] Sitaramaiah, G. (1965). Polymer–solvent interactions of bisphenol a polycarbonate in different solvents. Journal of Polymer Science Part A: Polymer Chemistry, 3(8), 2743–2757.
[122] Akashi, K., Nakamura, Y., & Norisuye, T. (1998). Small-angle X-ray scattering from bisphenol A polycarbonate in tetrahydrofuran. Molecular characteristics and excluded-volume effects. Polymer, 39(21), 5209–5213.
[123] Schmitz, K. S. (1990). An introduction to dynamic light scattering by macromolecules. Academic Press.
[124] Li, Y. C., Chen, K. B., Chen, H. L., Hsu, C. S., Tsao, C. S., Chen, J. H., & Chen, S. A. (2006). Fractal aggregates of conjugated polymer in solution state. Langmuir, 22(26), 11009–11015.
[125] Li, Y. C., Chen, C. Y., Chang, Y. X., Chuang, P. Y., Chen, J. H., Chen, H. L., Hsu, C. S., Ivanov, V. A., Khalatur, P. G., & Chen, S. A. (2009). Scattering study of the conformational structure and aggregation behavior of a conjugated polymer solution. Langmuir, 25(8), 4668–4677.
[126] Chen, J. H., Chang, C. S., Chang, Y. X., Chen, C. Y., Chen, H. L., & Chen, S. A. (2009). Gelation and its effect on the photophysical behavior of poly(9,9-dioctylfluorene-2,7-diyl) in toluene. Macromolecules, 42(4), 1306–1314.
[127] Park, D., Hong, J.-W. (1997). Solvent-induced crystallization and interaction parameter of the blends of bisphenol A polycarbonate and poly(phenyl methacrylate). Polymer Journal, 29(12), 970–974.
[128] Kister, G., Cassanas, G., & Vert, M. (1998). Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer, 39(2), 267–273.
[129] Carroll, C. P., & Joo, Y. L. (2006). Electrospinning of viscoelastic Boger fluids: Modeling and experiments. Physics of Fluids, 18(5), 053102-1–053102-14.
[130] Carroll, C. P., Zhmayev, E., Kalra, V., & Joo, Y. L. (2008). Nanofibers from electrically driven viscoelastic jets: modeling and experiments. Korea-Australia Rheology Journal, 20(3), 153–164.
[130] 王茂齡 (民 90)。輸送現象。臺北市:高立圖書有限公司。
[131] Welty, J. R., Wicks, C. E., & Wilson R. E. (1976). Fundamentals of Momentum, Heat, and Mass Transfer Third Edition. Wiley-Interscience.
[132] Părău, E. I., Decent, S. P., Simmons, M. J. H., Wong, D. C. Y., & King, A. C. (2007). Nonlinear viscous liquid jets from a rotating orifice. Journal of Engineering Mathematics, 57(2), 159–179.
[133] Christanti, Y., & Walker, L. M. (2002). Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance. Journal of Rheology, 46(3), 733–748.
[134] Lopez-Herrera, J. M., & Ganan-Calvo, A. M. (2004). A note on charged capillary jet breakup of conducting liquids: experimental validation of a viscous one-dimensional model. Journal of Fluid Mechanics, 501, 303–326.
[135] Wong, D. C. Y., Simmons, M. J. H., Decent, S. P., Parau, E. I., & King, A. C. (2004). Break-up dynamics and drop size distributions created from spiralling liquid jets. International Journal of Multiphase Flow, 30(5), 499–520.
[136] Rutledge, G. C., & Fridrikh, S, V. (2007). Formation of fibers by electrospinning. Advanced Drug Delivery Reviews, 59(14), 1384–1391.
[137] Shenoy, S. L., Bates, W. D., Frisch, H. L., & Wnek, G. E. (2005). Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer, 46(10), 3372–3384.
[138] Greiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670–5703.
[139] Hu, X., & Lesser, A. J. (2004). Enhanced crystallization of bisphenol-A polycarbonate by nano-scale clays in the presence of supercritical carbon dioxide. Polymer, 45(7), 2333–2340.
[140] Whitney, D. R., & Yaris, R. (1997). Local mechanism of phenyl ring π-flips in glassy polycarbonate. Macromolecules, 30(6), 1741–1751.
[141] Heymans, N., & Rossum, S. V. (2002). FTIR investigation of structural modifications during low-temperature ageing of polycarbonate. Journal of Materials Science, 37(20), 4273–4277.
[142] Lu, J., Wang, Y., & Shen, D. (2000). Infrared spectroscopic and modulated differential scanning calorimetric study of physical aging in bisphenol A polycarbonate. Polymer Journal, 32(7), 610–615.
[143] Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J., Stöckli, T., Burnham, N. A., & Forró, L. (1999). Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters, 82(5), 944–947.
[144] Matsuo, M., Sawatari, C., Iwai, Y., & Ozaki, F. (1990). Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules, 23(13), 3266–3275.
[145] Nishino, T., Takano, K., & Nakamae, K. (1995). Elastic modulus of the crystalline regions of cellulose polymorphs. Journal of Polymer Science Part B: Polymer Physics, 33(11), 1647–1651.
[146] Luo, C. J., Nangrejo, M., & Edirisinghe, M. (2010). A novel method of selecting solvents for polymer electrospinning. Polymer, 51(7), 1654–1662.
[147] Zussman, E., Chen, X., Ding, W., Calabri, L., Dikin, D. A., Quintana, J. P., & Ruoff, R. S. (2005). Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 43(10), 2175–2185.
[148] Zhang, W. X., Wang, Y. Z., & Sun, C. F. (2007). Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. Journal of Polymer Research, 14(6), 467–474.
[149] Bai, Y.-J., Wang, C.-G., Lun, N., Wang, Y.-X., Yu, M.-J., & Zhu, B. (2006). HRTEM microstructures of PAN precursor fibers. Carbon, 44(9):1773–1778.