研究生: |
江韶哲 Zhe, Jiang Shao |
---|---|
論文名稱: |
石墨烯於奈米銅上製備參數與纖維素複合塗層磨潤性質研究 Studies of fabrication graphene on copper nanoparticles, and tribological properties of cellulose composite coating |
指導教授: |
施士塵
Shi, Shih-Chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 化學氣相沉積法 、奈米銅顆粒 、合成 、石墨烯 、機制 、摩潤 |
外文關鍵詞: | CVD, copper nanoparticles, synthesis, graphene, mechanism, Tribology |
相關次數: | 點閱:103 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上要得到高品質的石墨烯材料,都是利用化學氣相沉積法,在不同金屬薄片上合成石墨烯,而要在奈米金屬顆粒上形成石墨烯多半是利用氧化還原法、鞘磨、球磨,雖然很多人在金屬薄片上利用CVD合成石墨烯,但鮮少有人在奈米銅顆粒上長,甚至幾乎可以說還沒有人發表過類似的概念,本文最主要的貢獻在於探討以化學氣相沉積法於奈米銅粒子上製備石墨烯材料的製程中各個參數對於石墨烯品質的影響,並提出奈米粒子上合成石墨烯的機制。
研究結果顯示,在奈米銅顆粒上合成石墨烯的生長機制為1)碳源分解為碳氫化合物;2)碳氫化合物吸附到銅顆粒表面,形成核;3)碳氫化合物會脫氫,把碳留在銅表面生長為較大片的石墨烯,跟一般銅片的合成機制較不一樣的地方在於氫氣的作用,一般而言銅片表面的的預處理為在退火階段通入氫氣,使其表面變得光滑,並同時形成核,在銅顆粒上合成石墨烯時發現不只在退火階段通入氫氣有作用,若分別在各階段通入氫氣也會有表面蝕刻以及成核的作用相同的作用。最後和羥丙基甲基纖維素形成複合薄膜後,可顯著降低其摩擦係數。
關鍵字:化學氣相沉積法、奈米銅顆粒、合成、石墨烯、機制、摩潤。
Conventionally, we use chemical vapor deposition (CVD) grow graphene on thin metal film to get high quality graphene, and use oxidation reduction method, sheath milling and ball milling to form graphene on metal nanoparticles, but there isn’t any report that use CVD to grow graphene on metal nanoparticles. This paper’s most important contribution is to study how different process factors in using CVD grow graphene on copper nanoparticles impact the graphene quality.
Experiment results show that the grown graphene on copper nanoparticle’s mechanism is: 1) carbon source decompose into hydrocarbon; 2) hydrocarbon adsorb onto copper nanoparticle’s surface, to form nucleus; 3) hydrocarbon will dehydrogenize, leaving carbon atoms, then form graphene. Hydrogen plays a role of making copper nanoparticles smooth, and etching it surface to form nucleus in heating, annealing, growing stage. Last we add graphene/copper nanoparticles composite into HPMC solution to make thin film, to decrease its coefficient of friction (COF).
Key Words: CVD, copper nanoparticles, synthesis, graphene, mechanism, Tribology.
[1] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer,Intrinsic and extrinsic performance limits of graphene devices on SiO 2, Nature nanotechnology, 3 (2008) pp.206.
[2] X. Du, I. Skachko, A. Barker, E.Y. Andrei,Approaching ballistic transport in suspended graphene, Nature nanotechnology, 3 (2008) pp.491.
[3] X. Du, I. Skachko, F. Duerr, A. Luican, E.Y. Andrei,Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature, 462 (2009) pp.192.
[4] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim,Fine structure constant defines visual transparency of graphene, Science, 320 (2008) pp.1308-1308.
[5] R. Peierls,Quelques proprietes typiques des corpses solides, Ann. IH Poincare, 5 (1935) pp.177-222.
[6] L. Landau,Zur Theorie der phasenumwandlungen II, Phys. Z. Sowjetunion, 11 (1937) pp.26-35.
[7] L.D. Landau, E.M. Lifshitz, L. Pitaevskii, in, pergamon, Oxford, (1980).
[8] N.D. Mermin,Crystalline order in two dimensions, Physical Review, 176 (1968) pp.250.
[9] J. Venables, G. Spiller, M. Hanbucken,Nucleation and growth of thin films, Reports on Progress in Physics, 47 (1984) pp.399.
[10] J. Evans, P. Thiel, M.C. Bartelt,Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds, Surface Science Reports, 61 (2006) pp.1-128.
[11] K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim,Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005) pp.10451-10453.
[12] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov,Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) pp.666-669.
[13] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, AA,Two-dimensional gas of massless Dirac fermions in graphene, nature, 438 (2005) pp.197.
[14] Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim,Experimental observation of the quantum Hall effect and Berry's phase in graphene, nature, 438 (2005) pp.201.
[15] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff,Graphene-based composite materials, nature, 442 (2006) pp.282.
[16] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth,The structure of suspended graphene sheets, Nature, 446 (2007) pp.60.
[17] A.K. Geim, K.S. Novoselov,The rise of graphene, Nature Materials, 6 (2007) pp.183.
[18] H. Ulrich, K. Ernst,Untersuchungen über Graphitoxyd, Zeitschrift für anorganische und allgemeine Chemie, 234 (1937) pp.311-336.
[19] S. L.,Verfahren zur Darstellung der Graphitsäure, Berichte der deutschen chemischen Gesellschaft, 31 (1898) pp.1481-1487.
[20] W.S. Hummers Jr, R.E. Offeman,Preparation of graphitic oxide, Journal of the american chemical society, 80 (1958) pp.1339-1339.
[21] W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez,Epitaxial graphene, Solid State Communications, 143 (2007) pp.92-100.
[22] Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, P. Avouris,100-GHz transistors from wafer-scale epitaxial graphene, Science, 327 (2010) pp.662-662.
[23] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong,Large-scale pattern growth of graphene films for stretchable transparent electrodes, nature, 457 (2009) pp.706.
[24] S.-Y. Kwon, C.V. Ciobanu, V. Petrova, V.B. Shenoy, J. Bareno, V. Gambin, I. Petrov, S. Kodambaka,Growth of semiconducting graphene on palladium, Nano letters, 9 (2009) pp.3985-3990.
[25] P.W. Sutter, J.-I. Flege, E.A. Sutter,Epitaxial graphene on ruthenium, Nature materials, 7 (2008) pp.406.
[26] J. Coraux, A.T. N ‘Diaye, C. Busse, T. Michely,Structural coherency of graphene on Ir (111), Nano letters, 8 (2008) pp.565-570.
[27] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc,Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009) pp.1312-1314.
[28] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song,Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature nanotechnology, 5 (2010) pp.574.
[29] in, Google Patents, (1896).
[30] W. Arsem,Transformation of Other Forms of Carbon into Graphite, Industrial & Engineering Chemistry, 3 (1911) pp.799-804.
[31] B. Banerjee, T. Hirt, P.W. Jun,Pyrolytic carbon formation from carbon suboxide, Nature, 192 (1961) pp.450.
[32] A.E. Karu, M. Beer,Pyrolytic formation of highly crystalline graphite films, Journal of Applied Physics, 37 (1966) pp.2179-2181.
[33] S. Robertson,Graphite formation from low temperature pyrolysis of methane over some transition metal surfaces, Nature, 221 (1969) pp.1044.
[34] A. Krishnan, E. Dujardin, M. Treacy, J. Hugdahl, S. Lynum, T. Ebbesen,Graphitic cones and the nucleation of curved carbon surfaces, Nature, 388 (1997) pp.451.
[35] S. Hagstrom, H. Lyon, G. Somorjai,Surface structures on the clean platinum (100) surface, Physical Review Letters, 15 (1965) pp.491.
[36] F. Himpsel, K. Christmann, P. Heimann, D. Eastman, P.J. Feibelman,Adsorbate band dispersions for C on Ru (0001), Surface Science Letters, 115 (1982) pp.L159-L164.
[37] S. Mikhailov, E. Rut'kov, A.Y. Tontegode,Effect of Cs and Ba adsorption on the electronic properties of carbon films adsorbed on metals (Ir, Re), Surface Science, 226 (1990) pp.381-388.
[38] J. Hamilton, J. Blakely,Carbon segregation to single crystal surfaces of Pt, Pd and Co, Surface Science, 91 (1980) pp.199-217.
[39] M. Eizenberg, J. Blakely,Carbon monolayer phase condensation on Ni (111), Surface Science, 82 (1979) pp.228-236.
[40] A. Obraztsov, E. Obraztsova, A. Tyurnina, A. Zolotukhin,Chemical vapor deposition of thin graphite films of nanometer thickness, Carbon, 45 (2007) pp.2017-2021.
[41] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong,Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano letters, 9 (2008) pp.30-35.
[42] H. Zi-Pu, D. Ogletree, M. Van Hove, G. Somorjai,LEED theory for incommensurate overlayers: Application to graphite on Pt (111), Surface Science, 180 (1987) pp.433-459.
[43] T. Land, T. Michely, R. Behm, J. Hemminger, G. Comsa,STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition, Surface Science, 264 (1992) pp.261-270.
[44] S. Bleikamp, P.J. Feibelman, T. Michely,Two-dimensional Ir cluster lattice on a graphene moiré on Ir (111), Physical Review Letters, 97 (2006) pp.215501.
[45] R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit,Bandgap opening in graphene induced by patterned hydrogen adsorption, Nature materials, 9 (2010) pp.315.
[46] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong*,Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano letters, 9 (2009) pp.3087-3087.
[47] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.-S. Pei,Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, 93 (2008) pp.113103.
[48] M.P. Levendorf, C.S. Ruiz-Vargas, S. Garg, J. Park,Transfer-free batch fabrication of single layer graphene transistors, Nano letters, 9 (2009) pp.4479-4483.
[49] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang,Direct chemical vapor deposition of graphene on dielectric surfaces, Nano letters, 10 (2010) pp.1542-1548.
[50] Y.-H. Lee, J.-H. Lee,Scalable growth of free-standing graphene wafers with copper (Cu) catalyst on SiO 2/Si substrate: thermal conductivity of the wafers, Applied Physics Letters, 96 (2010) pp.083101.
[51] Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S.H. Sim, Y.I. Song, B.H. Hong, J.-H. Ahn,Wafer-scale synthesis and transfer of graphene films, Nano letters, 10 (2010) pp.490-493.
[52] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu,Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano letters, 9 (2009) pp.1752-1758.
[53] A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K.F. Kelly, P.M. Ajayan,Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films, Chemistry of Materials, 22 (2010) pp.3457-3461.
[54] H. Cao, Q. Yu, L.A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D.K. Benjamin, Z. Jiang, J. Bao,Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization, Applied Physics Letters, 96 (2010) pp.122106.
[55] V.P. Verma, S. Das, I. Lahiri, W. Choi,Large-area graphene on polymer film for flexible and transparent anode in field emission device, Applied Physics Letters, 96 (2010) pp.203108.
[56] Y. Obeng, S. De Gendt, P. SRinivasan, D. Misra, H. Iwai, Z. Karim, D. Hess, H. Grebel,Graphene and emerging materials for post-CMOS applications, Electrochemical Society: Pennington, NJ, USA, (2009).
[57] <Comprehensive coordination chemistry the synthesis, reactions, properties & applications of coordination compounds. Middle transition elements.pdf>.
[58] C. Oshima, A. Nagashima,Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces, Journal of Physics: Condensed Matter, 9 (1997) pp.1.
[59] R.B. McLellan,The solubility of carbon in solid gold, copper, and silver, Scripta Metallurgica, 3 (1969) pp.389-391.
[60] G. López, E. Mittemeijer,The solubility of C in solid Cu, Scripta Materialia, 51 (2004) pp.1-5.
[61] H. Baker, A. Handbook,Vol. 3: Alloy Phase Diagrams, ASM International Materials, Ohio, (1992) pp.2-173.
[62] P. Sutter, M. Hybertsen, J. Sadowski, E. Sutter,Electronic structure of few-layer epitaxial graphene on Ru (0001), Nano letters, 9 (2009) pp.2654-2660.
[63] C. Baraniecki, P. Pinchbeck, F. Pickering,Some aspects of graphitization induced by iron and ferro-silicon additions, Carbon, 7 (1969) pp.213-224.
[64] B. Banerjee, P. Walker Jr,Interaction of Evaporated Carbon Films with Nickel, Journal of Applied Physics, 33 (1962) pp.229-230.
[65] F. Derbyshire, A. Presland, D. Trimm,Graphite formation by the dissolution—precipitation of carbon in cobalt, nickel and iron, Carbon, 13 (1975) pp.111-113.
[66] T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, C. Oshima,Anomalous bond of monolayer graphite on transition-metal carbide surfaces, Physical review letters, 64 (1990) pp.768.
[67] C. Oshima, E. Bannai, T. Tanaka, S. Kawai,Carbon layer on lanthanum hexaboride (100) surface, Japanese journal of applied physics, 16 (1977) pp.965.
[68] S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nørskov,Atomic-scale imaging of carbon nanofibre growth, Nature, 427 (2004) pp.426.
[69] E. Sutter, P. Albrecht, P. Sutter,Graphene growth on polycrystalline Ru thin films, Applied Physics Letters, 95 (2009) pp.133109.
[70] D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi,Single-walled carbon nanotube growth from highly activated metal nanoparticles, Nano letters, 6 (2006) pp.2642-2645.
[71] C.a. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu,Patterned graphene as source/drain electrodes for bottom‐contact organic field‐effect transistors, Advanced Materials, 20 (2008) pp.3289-3293.
[72] T. Ong, F. Xiong, R. Chang, C. White,Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces, Journal of materials research, 7 (1992) pp.2429-2439.
[73] S.T. Lee, S. Chen, G. Braunstein, X. Feng, I. Bello, W. Lau,Heteroepitaxy of carbon on copper by high‐temperature ion implantation, Applied physics letters, 59 (1991) pp.785-787.
[74] L. Constant, C. Speisser, F. Le Normand,HFCVD diamond growth on Cu (111). Evidence for carbon phase transformations by in situ AES and XPS, Surface Science, 387 (1997) pp.28-43.
[75] W. Cai, Y. Zhu, X. Li, R.D. Piner, R.S. Ruoff,Large area few-layer graphene/graphite films as transparent thin conducting electrodes, Applied Physics Letters, 95 (2009) pp.123115.
[76] (!!! INVALID CITATION !!!).
[77] H.K. Kim, R. Verpoorte,Sample preparation for plant metabolomics, Phytochemical Analysis, 21 (2010) pp.4-13.
[78] M. Butt,Effect of hydrogen attack on the strength of high purity copper, Journal of Materials Science Letters, 2 (1983) pp.1-2.
[79] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov,Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene, ACS nano, 5 (2011) pp.6069-6076.
[80] K. Chavez, D. Hess,A novel method of etching copper oxide using acetic acid, Journal of The Electrochemical Society, 148 (2001) pp.G640-G643.
[81] X. Li, W. Cai, L. Colombo, R.S. Ruoff,Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling, Nano Letters, 9 (2009) pp.4268-4272.
[82] A.C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth,Raman spectrum of graphene and graphene layers, Physical review letters, 97 (2006) pp.187401.
[83] H. Chen, W. Zhu, Z. Zhang,Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces, Physical Review Letters, 104 (2010) pp.186101.
[84] W. Robertson,Faceting of copper surfaces at 1000° C, Acta Metallurgica, 12 (1964) pp.241-253.
[85] C. Mattevi, H. Kim, M. Chhowalla,A review of chemical vapour deposition of graphene on copper, Journal of Materials Chemistry, 21 (2011) pp.3324-3334.
[86] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau,Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nature nanotechnology, 4 (2009) pp.562.
[87] J.t. Nelson, in: Proc. Phys. Soc. London, (1945), pp. 477.
[88] S.-C. Shi, T.-F. Huang,Raman study of HPMC biopolymer transfer layer formation under tribology test, Optical and Quantum Electronics, 48 (2016) pp.532.
[89] W. Jablonska, in, Sheffield Hallam University, (2011).
[90] 黃騰鋒,羥丙基甲基纖維素綠色薄膜自我修復與磨潤性質研究, 成功大學機械工程學系學位論文, (2016) pp.1-64.
[91] S.-C. Shi, F.-I. Lu,Biopolymer Green Lubricant for Sustainable Manufacturing, Materials, 9 (2016) pp.338.
[92] A. Fatimi, J.-F. Tassin, R. Turczyn, M.A. Axelos, P. Weiss,Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization, Acta biomaterialia, 5 (2009) pp.3423-3432.
[93] G.A. Burdock,Safety assessment of hydroxypropyl methylcellulose as a food ingredient, Food and Chemical Toxicology, 45 (2007) pp.2341-2351.
[94] M.M. Al-Tabakha,HPMC capsules: current status and future prospects, Journal of Pharmacy & Pharmaceutical Sciences, 13 (2010) pp.428-442.
[95] R. Zúñiga, O. Skurtys, F. Osorio, J. Aguilera, F. Pedreschi,Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure, Carbohydrate polymers, 90 (2012) pp.1147-1158.
[96] P.A. Simmons, P.C. Donshik, W.F. Kelly, J.G. Vehige,Conditioning of hydrogel lenses by a multipurpose solution containing an ocular lubricant, Eye & Contact Lens, 27 (2001) pp.192&hyhen.
[97] S.-C. Shi, T.-F. Huang, J.-Y. Wu,Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate, Materials, 8 (2015) pp.1738-1751.
[98] S.-C. Shi, T.-F. Huang,Self-Healing Materials for Ecotribology, Materials, 10 (2017) pp.91.
[99] 吳振宇,羥丙基甲基纖維素複合薄膜添加二硫化鉬之微結構與磨潤特性研究, 成功大學機械工程學系學位論文, (2016) pp.1-77.
[100] S.-C. Shi, J.-Y. Wu, T.-F. Huang, Y.-Q. Peng,Improving the tribological performance of biopolymer coating with MoS 2 additive, Surface and Coatings Technology, (2016).
[101] S.-C. Shi, J.-Y. Wu, T.-F. Huang,Raman, FTIR, and XRD study of MoS2 enhanced hydroxypropyl methylcellulose green lubricant, Optical and Quantum Electronics, 48 (2016) pp.474.
[102] R. Sothornvit,Effect of hydroxypropyl methylcellulose and lipid on mechanical properties and water vapor permeability of coated paper, Food research international, 42 (2009) pp.307-311.
[103] R. Villalobos, P. Hernández-Muñoz, A. Chiralt,Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films, Food Hydrocolloids, 20 (2006) pp.502-509.
[104] L. Sirghi,Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts, Applied Physics Letters, 82 (2003) pp.3755-3757.
[105] H. Barsett, A. Ebringerová, S. Harding, T. Heinze, Z. Hromádková, C. Muzzarelli, R. Muzzraelli, B. Paulsen, O. ElSEOUD, T. Heinze, Polysaccharides I: Structure, characterisation and use, Springer Science & Business Media, (2005).
[106] G. Biresaw, C. Carriere,Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends, Journal of Polymer Science Part B: Polymer physics, 39 (2001) pp.920-930.
[107] W.J. Kim, T.J. Lee, S.H. Han,Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties, Carbon, 69 (2014) pp.55-65.
[108] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour,Growth of graphene from solid carbon sources, Nature, 468 (2010) pp.549.
[109] S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H. Park,Synthesis of large‐area graphene layers on poly‐nickel substrate by chemical vapor deposition: wrinkle formation, Advanced Materials, 21 (2009) pp.2328-2333.
[110] A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, J. Guillemette, H.S. Skulason, T. Szkopek, M. Siaj,Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors, Carbon, 49 (2011) pp.4204-4210.
[111] B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K.-i. Ikeda, S. Mizuno,Epitaxial growth of large-area single-layer graphene over Cu (1 1 1)/sapphire by atmospheric pressure CVD, Carbon, 50 (2012) pp.57-65.
[112] X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff,Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, Journal of the American Chemical Society, 133 (2011) pp.2816-2819.
[113] H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, W.-J. Zhang,Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation, Journal of the American Chemical Society, 134 (2012) pp.3627-3630.
[114] X. Li, C.W. Magnuson, A. Venugopal, J. An, J.W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu,Graphene films with large domain size by a two-step chemical vapor deposition process, Nano letters, 10 (2010) pp.4328-4334.
[115] M.-S. Won, O.V. Penkov, D.-E. Kim,Durability and degradation mechanism of graphene coatings deposited on Cu substrates under dry contact sliding, Carbon, 54 (2013) pp.472-481.
[116] W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, S.-S. Pei,Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes, Nanotechnology, 23 (2011) pp.035603.
[117] M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno,Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Physical Chemistry Chemical Physics, 13 (2011) pp.20836-20843.
[118] P. Trinsoutrot, C. Rabot, H. Vergnes, A. Delamoreanu, A. Zenasni, B. Caussat,The role of the gas phase in graphene formation by CVD on copper, Chemical Vapor Deposition, 20 (2014) pp.51-58.
[119] L. Gan, Z. Luo,Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper, Acs Nano, 7 (2013) pp.9480-9488.
[120] P.L. Menezes, S.P. Ingole, M. Nosonovsky, S.V. Kailas, M.R. Lovell, Tribology for scientists and engineers, Springer, (2013).
[121] K.-S. Kim, H.-J. Lee, C. Lee, S.-K. Lee, H. Jang, J.-H. Ahn, J.-H. Kim, H.-J. Lee,Chemical Vapor Deposition-Grown Graphene: The Thinnest Solid Lubricant, ACS Nano, 5 (2011) pp.5107-5114.
[122] A. Pollard, M. Spencer, R. Thomas, P. Williams, J. Holt, J. Jennings,Georgeite and azurite as precursors in the preparation of co-precipitated copper/zinc oxide catalysts, Applied Catalysis A: General, 85 (1992) pp.1-11.
[123] M. Bradford, M. Vannice,CO2 reforming of CH4, Catalysis Reviews, 41 (1999) pp.1-42.
[124] G. Jernigan, G. Somorjai,Carbon monoxide oxidation over three different oxidation states of copper: metallic copper, copper (I) oxide, and copper (II) oxide-a surface science and kinetic study, Journal of Catalysis, 147 (1994) pp.567-577.
[125] S. Seraphin, D. Zhou, J. Jiao,Filling the carbon nanocages, Journal of applied physics, 80 (1996) pp.2097-2104.
[126] A. Leonhardt, M. Ritschel, R. Kozhuharova, A. Graff, T. Mühl, R. Huhle, I. Mönch, D. Elefant, C. Schneider,Synthesis and properties of filled carbon nanotubes, Diamond and related materials, 12 (2003) pp.790-793.