簡易檢索 / 詳目顯示

研究生: 黃建家
Huang, Chien-Chia
論文名稱: 熔融還原煉鐵爐內氣體底吹流場解析與底吹管口固凝物形成之熱相似性研究
Fluid Flow and Thermal Similarity Study for the Formation of Solid Mushroom in Iron Ore Smelting Reduction Process
指導教授: 黃文星
Hwang, W. S.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 179
中文關鍵詞: 熔融還原煉鐵製程流場熱相似性固凝物
外文關鍵詞: iron ore smelting reduction process, fluid flow, solid mushroom, thermal similarity
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要分為兩部份,一是針對熔融還原煉鐵製程氣體底吹條件,探討底吹管口固凝物形成之熱傳效應,考慮影響固凝物形成的物理參數,推導噴吹管口固凝物形成之無因次群和熱傳無因次方程式。同時利用數值模擬來模擬固凝物形成之型態,並與冷模實驗結果作比對驗證。另一部份是使用SOLA-MAC數值模式,發展氣泡-鐵浴替代介質-熔渣替代介質三相之流場數值解析系統,來模擬不同底吹條件下熔融還原煉鐵爐內液相流場分布,並將模擬的結果與水模實驗結果來作驗證比對。
      本研究以兩種方法來探討噴吹管口固凝物形成與尺寸大小,第一種方法是根據帕金漢理論,採用因次分析法經由系統熱傳現象解析與考慮其物理參數,利用無因次分析推導出作為冷熱模系統間相似關係的無因次群。第二種方法是採用數學方程式來描述固凝物之熱傳,然後無因次化處理。主要根據Fourier熱傳定理推導出一熱傳無因次方程式,此方程式可應用在冷模或熱模單一系統。將上述兩種解析方法,探討無因次群熱相似性與熱傳無因次方程式,而建立起冷熱模系統間相似性解析方法。
      本研究另根據凝固熱傳理論,假設熔融還原煉鐵爐氣體底吹管口為一吸熱區域,藉由水與此吸熱區域的熱傳導方程式,模擬計算在吸熱區域形成的固凝物型態。探討不同吸熱區域的型態對固凝物型態之影響。並將模擬的結果與現有冷模實驗結果比對,可得知在無流動影響的情形下,固凝物型態呈現半圓球狀,模擬的結果與冷模實驗結果相似。
      另外,本研究使用SOLA-MAC數學模式,發展氣泡-鐵浴替代介質-熔渣替代介質三相之流場解析系統,用擬似單相流模式來處理氣-液兩相區,使用追蹤粒子法來處理自由表面問題,以及加入一層渣層粒子來模擬渣相擾動情形。最後,以此解析系統來探討不同底吹條件下流場的分布情形。由氣泡-鐵浴替代介質-熔渣替代介質三相之流場解析得知,隨著氣體流量的增大,其表面擾動與內部流場會相對變大。此外,渣層的擾動主要受到氣體流量大小的影響,隨著氣體流量愈大,表面渣層擾動愈大,渣層與液體混合程度亦愈大,有助於渣層中氧化鐵的還原效率。

      This research is divided into two parts mainly; one part of this research discusses the heat conducting effect of the mushroom-shaped solid near the bottom-blown tuyere for conditions of smelting reduction iron-making proccess, and derives the dimensionless groups and heat conduction dimensionless equation by considering the physical parameters of formation of mushroom-shaped solid. At the same time, this research uses the numerical simulation to simulate the shape of mushroon-shaped solid, and compares with water model experimental results. Another part of this research uses SOLA-MAC simulation method to develop gas-liquid-slag phases flow analysis, and simulates distributions of flow field in the smelting reduction iron-making furnace for different conditions of bottom-blown, and verifies the numerical simulation results and water model experimental results than correctly.
      This research discusses the formation and size of mushroom-shaped solid by two ways, one way adopts dimensional analytic method according to Bunkinghum Pi Theory with the heat coducting analysis of the model system and considering the physical parameter, and uses dimensionless analysis to derive the dimensionless groups between cold model and hot model system. Another way uses mathematic equations to decribe heat conduction of mushroom-shaped solid, and mathematic equations are treated by dimensionless analysis. According to Fourier's heat conduction law, this research derives a heat conducting dimensionless equation, it can be applied to cold model or hot model system. This research uses the above-mentioned two ways to discuss the heat similarity of dimensionless groups and heat conducting dimensionless equation, and establishes the similarity analysis method between cold model and hot model system.
      According to solidification and heat conducting theory, this research assumes that the region of bottom-blown tuyere in the smelting reduction iron-making furnace is a heat absorption region, and simulates the shape of mushroom-shaped solid in the heat absorption region by the heat conducting equation between water and this heat absorption region. This research investigates the influence of different shape of heat absorption region for the shape of mushroom-shaped solid. This research compares the results between numerical simulation and cold model experiment, it can be known that the shape of mushroom-shape solid is hemisphere-shaped without flowing influence, and the numerical simulation results are similar to cold model experimental results.
      In additional, this research use SOLA-MAc simulation method to develop gas-liquid-slag phases flow analysis, and uses the Quasi-Single Phase concept to deal with gas-liquid phases region, and uses the Marker and Cell (MAC) method to treat free surface problems, and uses set of marker particles to simulate the agitation of the smelting slag layers above the surface of the steel liquid. Finally, this research uses the simulation system to investigate the distribution of flow field for different conditions of bottom-blown. According to the results of gas-liquid-slag phases numerical simulation, with an increase in gas flow rate, the agitation of the liquid surface and the flow field will become larger. Furthermore, the agitation of the slag is affected by magnitude of gas flow rate. With an increase in gas flow rate, the agitation of the slag will become more violent and the slag will be carried deeper into the liquid as the gas flow rate increases. It is useful for the reduction efficiency of iron oxide in slag.

    摘要 3 章節目錄 7 圖目錄 10 表目錄 16 符號說明 17 第一章 緒論 20 1-1 研究背景 20 1-2 文獻回顧 21 1-2-1 熔融還原煉鐵製程 21 1-2-2 噴吹管口固凝物研究 24 1-2-3 固凝物熱相似性之解析 25 1-2-4氣體攪拌數學模擬 26 1-3 研究目的與內容 29 第二章 理論基礎 33 2-1 製程原理 33 2-2 系統相似性解析之功能 35 2-3 相似性因次推導方法 35 2-3-1帕金漢π理論-因次分析法 35 2-3-2 固凝物熱傳方程式無因次化法 37 2-4 熱傳凝固數值模擬理論 37 2-4-1 原理 38 2-4-2 熱傳控制方程式 38 2-4-3 凝固潛熱的處理 39 2-5 氣體底吹流場數值模擬理論基礎 40 2-5-1 氣-液兩相區處理模式 40 2-5-2 渣相處理方式 44 2-5-3 自由表面之定義 45 2-5-4 自由表面追蹤法則 46 2-5-5 邊界條件之設定 47 2-5-6邊界條件之數值分析 48 第三章 物理模型 52 3-1 固凝物之物理假設 52 3-2 底吹管口固凝物形成之熱相似性因次分析法 52 3-2-1 無因次群之推導 53 3-2-2 無因次群之物理意義 56 3-3 底吹管口固凝物形成熱傳解析方程式無因次化法 57 3-3-1 熱傳解析方程式之推導 57 3-3-2 熱傳解析方程式之無因次化物理意義 62 3-4 相似性無因次群與熱傳無因次方程式之結合應用 62 3-5 固凝物形成之數值模擬 68 3-5-1 數值模擬原理 68 3-5-2 數值分析方法 68 3-5-3 模型網格之建立 70 3-5-4 吸熱區域邊界條件之設定 70 3-6 氣體底吹流場解析之數值方法 72 3-6-1 研究方法 72 3-6-2 動量方程式之差分化 72 3-6-3 連續方程式與壓力修正方法 74 3-6-4 熔融還原煉鐵爐網格模型系統之建立 77 第四章 結果與討論 84 4-1 固凝物冷熱模間相似性轉換之分析 84 4-2 固凝物型態數值模擬結果與冷模實驗之固凝物型態比較 88 4-3 熔融還原煉鐵爐內底部氣體底吹流場數值解析結果 90 4-3-1 熔融還原煉鐵爐氣-液兩相之單管氣體底吹流場解析結果 91 4-3-2 熔融還原煉鐵爐氣-液兩相之五管氣體底吹流場解析結果 92 4-3-3 熔融還原煉鐵爐氣-液-渣三相之五管氣體底吹流場解析結果 93 4-3-4 熔融還原煉鐵爐氣-液-渣三相之五管氣體不同底吹條件之流場解析結果 94 第五章 結論 160 第六章 未來研究工作 163 參考文獻 165 附錄A:無因次分析π1~π15之推導 172 附錄B:冷模與熱模系統物性參數表 178

    1. 楊天鈞編,"熔融還原技術",冶金工業出版社,1989,P11.

    2. 楊天鈞編,"熔融還原技術",冶金工業出版社,1989,P12.

    3. M. J. Corbett, “Process Developments in Coal-based Ironmaking”, Transactions of the Institute of Mining and Metallurgy, Section C, 103, 1994, p21-25.

    4. M. Baba, “Current Status of JISF’s Direct Iron Ore Smelting Reduction Process”, Transactions of the Institute of Mining and Metallurgy, Section C, 103, 1994, p15-20.

    5. G. R. Belton and R. J. Fruehan, “Rate Phenomena in Iron Bath Smelting”, Proceeding of the Ethem T. Turkdogan Symposium, 1994, p3-21.

    6. Shinotake and Y. Takamoto, “Combustion and Heat Transfer Mechanism in Iron Bath Smelting Reduction Furnace”, ATS Steelmaking Conference, 1992, p965-973.

    7. H. J. Li and M. Tokuda, “Thermodynamic Simulation on the Behavior of Recycling Elements in the Iron Bath Smelting Reduction Process”, ISIJ International, Vol. 33, 1993, No.5, p539-548.

    8. M. P. Davis, K. Pericleous, M. P. Schwarz and M. Cross, “Mathematical Modelling Tools for the Optimisation of Direct Smelting Process”, Conference Proceedings on Computational Fluid Dynamics in Mineral & Metal Processing & Powder Generation, 1997.

    9. D. Mazumdar and R. I. L. Guthire, “The Physical and Mathematical Modelling of Gas Stirred Ladle Systems”, ISIJ International, Vol. 35, 1995, No. 1, p1-20.

    10. O. J. Ilegbusi and J. Szekely, “The Modeling of Gas-Bubble Driven Circulation Systems”, ISIJ International, Vol. 30, 1990, p731.

    11. H. Turkoglu and B. Farouk, “Numerical Computations of Fluid Flow and Heat Transfer in a Gas-Stirred Liquid Bath”, Metallurgy Transaction, Vol. 21B, 1990, p771.

    12. D. Mazumdar and R. I. L. Guthrie, “Hydrodynamic Modeling of Some Gas Injection Procedures in Ladle Metallurgy Operations”, Metallurgical Transactions B, Vol. 16, 1985, p83-90.

    13. D. Mazumdar and R. I. L. Guthrie, “Numerical Computation of Flow and Mixing in Ladle Metallurgy Steelmaking Operations (CAS Methods) ”, Applied Mathematical Modeling, Vol. 10, 1986, p25-32.

    14. R. I. L. Guthrie, “Physical and Mathematical Models for Ladle Metallurgy Operations”, Conference Proceeding on Mathematical Modeling of Materials Processing Operations, 1987, p447-482.

    15. S. T. Johansen, and F. Boysan, “Fluid Dynamics in Bubble-Stirred Ladle: Part II. Mathematical Modeling”, Metallurgical Transactions B, Vol. 19B, 1988, p755-764.

    16. Y. Y. Sheng and G. A. Irons, “The Impact of Bubble Dynamics on the Flow in Plumes of Ladle Water Models”, Metallurgical and Materials Transactions B, Vol. 26B, 1995, P625-635.

    17. S. T. Johansen, “Fluid Flow in Bubble-Stirred Ladle”, SINTEF Report, 1986.

    18. D. Mazumdar and R. I. L. Guthrie, “An Assessment of a Two Phase Calculation Procedure for Dynamic Modeling of Submerged Gas Injection in Ladles” , ISIJ International, Vol. 34, 1994, p384.

    19. Y. Y. Sheng and G. A. Irons, “The Impact of Bubble Dynamics on the Flow in Plumes of Ladle Water Models”, Metallurgical and Materials Transactions B, Vol. 26B, 1995, P625-635.

    20. J. Szekely, H. J. Wang and K. M. Kiser, “Flow Pattern and Velocity Prediction in a Water Model of an Argon-Stirred Ladle”, Metallurgical Transactions B, Vol. 13, 1976, p287-295.

    21. J. Szekely, T. Lehner and C. W. Chang, “Flow Phenomena Mixing and Mass Transfer in Argon-Stirred Ladles”, Ironmaking and Steelmaking, No. 6, 1979, p285-293.

    22. T. DebRoy, A. K. Majumdar and D. B. Spalding, “Numerical Prediction of Recirculation Flows with Free Convection Encountered in Gas-Agitated Reactors”, Applied Mathematical Modeling, September, 1978, p146-150.

    23. T. DebRoy, A. K. Majumdar, “Predicting Fluid Flow in Gas-Stirred Systems”, Journal of Metals, November, 1981, p42-47.

    24. J. H. Grevet, J. Szekely and N. E. El-Kaddah, “An Experimental and Theoretical Study of Gas Bubble Driven Circulation Systems”, International Journal of Heat and Mass Transfer, Vol. 25, No. 4, 1982, p487-497.

    25. B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows”, Computer Method in Applied Mechanics and Engineering, Vol. 3, 1974, p269-289.

    26. Y. Sahai and R. I. L. Guthrie, “Hydrodynamics of Gas Stirred Melts”, Metallurgical Transactions B, Vol. 13, 1982, p193-211.

    27. J. S. Woo, J. Szekely, A. H. Castillejos, and J. K. Brimacombe, “A Study on the Mathematical Modeling of Turbulent Recirculating Flows in Gas-Stirred Ladles”, Metallurgical Transaction B, Vol. 21B, 1990, p269-277.

    28. M. Zhou and J. K. Brimacombe, “Critical Fluid-Flow Phenomenon in Gas-Stirred Ladle”, Metallurgy Transaction, Vol. 25B, 1994, p681-693.

    29. P. S. Mohanty, T. Sundararajan and N. Chakraborti, “A Finite Element Modeling Analysis of Flow and Mass Transfer through Nonspherical Bubbles in a Copper Converter”, Metallurgy Transaction, Vol. 24B, 1993, p617-626.

    30. J. D. Bugg and R. D. Rowe, “Modeling the Initial of Large Cylindrical and Spherical Bubbles”, International Journal For Numerical Methods In Fluids, Vol. 13, 1991, p109-129.

    31. A. Tomiyama, A. Sou, H. Minagawa and T. Sakaguchi, “Numerical Analysis of a Single Bubble by VOF Method”, JSME International Journal, Vol. 36B, No.1, 1993, p51-56.

    32. A. Nishihara, S. Kieda and Y. Kunugi, “Numerical Analysis of the Motion of a Bubble Using MAC Method”, 日本機械學會論文集, Vol. 59B, 1993, p126-130.

    33. D. Bhaga and M. E. Weber, “In-Line Interaction of a Pair of Bubbles in a Viscous Liquid”, Chemical Engineering Science, Vol. 35, 1980, p2467-2474.

    34. I. Komasawa, T. Otake and M. Kamojima, “Wake Behavior and Its Effect on Interaction Between Spherical Cap Bubbles”, Journal of Chemical Engineering of Japan, Vol. 13, 1980, p103-109.

    35. S. O. Unverdi and G. Tryggvason, “A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows”, Journal of Computational Physics, Vol. 100, 1992, p25-37.

    36. S. H. Brecht and J. R. Ferrante, “Vortex-in-Cell Simulations of Buoyant Bubbles in Three Dimensions”, Physical Fluids A, Vol. 1, No. 7, 1989, p1166-1191.

    37. D. Mazumdar and R. I. Gutrie, ”An Assessment of a Two Phase Calculation Procedure for Dynamic Modeling of Submerged”, ISIJ Int., Vol. 30, 1990, p731.

    38. W. L. Haberman and R. K. Morton: Proc. ASCE, Vol. 387, 1954, p227.

    39. R. Clift, J.R.Grace and M. E. Weber,” Bubbles, Drops and Particles”, Academic Press Inc., New York, NY, 1978.

    40. C. W. Hirt, B. D. Nichols and N. C. Romero, “SOLA-A Numerical Solution Algorithm for Transient Fluid Flows”, Los Alamos Scientific Laboratory report LA-5852, 1975.

    41. 鄭佩菁,”熔融材料製程中兩相流之流場解析研究”, 國立成功大學碩士論文, 2001.

    42. 吳鉉忠,”兩相流的模擬技術在熔融還原煉鐵製程中之研究”,國立成功大學碩士論文, 1999.

    43. 黃昱斌,”直接熔融還原煉鐵製程底吹台上方固凝物形成之水模研究”,國立成功大學碩士論文, 2000.

    44. 曲英, 劉今, “冶金反應工程學導論”, 冶金工業出版社, 1988年, 5月.

    45. 原著 Incropera, DeWitt, 譯者 張仲卿, 侯順雄, 張進寬, 杜鳳棋, “熱傳遞”, 高立圖書有限公司.

    46. B. Gebhart, “Heat conduction and mass diffusion”, McGraw-Hill series in Mechanical Engineering, 1993.

    47. A. Bejan, “Convection heat transfer”, Wiley, 1984.

    48. J. K. Platten and J. C. Legros, “Convection in liquids”, Springer-Verlag, 1984.

    49. U. Grigull and H. Sandner, “Heat Conduction”, International Series in Heat and Mass Transfer, 1984.

    50. 戴有為, “對流傳熱分析”, 兵器工業出版, 1989.

    51. O. J. Ilegbusi, M. Iguchi and W. Wahnsiedler, “Mathematical and Physical Modeling of Matherials Processing Operations”, Chapman & Hall/CRC, 2000.

    下載圖示 校內:2005-07-20公開
    校外:2005-07-20公開
    QR CODE