| 研究生: |
黃政皓 Huang, Cheng-Hao |
|---|---|
| 論文名稱: |
自主性載具系統整合及開放式開發環境的建立 Open Integrated System Development Environment for Autonomous Vehicle System |
| 指導教授: |
譚俊豪
Tarn, Jun-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 243 |
| 中文關鍵詞: | 飛行動力模組 、控制器 、自主性載具 |
| 外文關鍵詞: | Flight Dynamic Model, controller, autonomous vehicle |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中,自主性載具的動態分析與控制將發展成一個很靈活實用的環境。此環境使用功能強大且靈活性高的模擬仿真與系統分析程序SIMULNIK與MATLAB。由於MATLAB的模組化結構,我們可以很容易將定翼機與直升機模組改編成別種載具模組,而內建的trim與線性化工具可讓SIMULINK與MATLAB環境更加完善的去執行非線性控制系統設計與分析。因此,我們只須建立載具的動力模組與控制器,使其可以完成我們想要做的動作。
文中所使用到的工具皆可廣泛應用到飛機穩定與控制分析領域上,且因為MAYLAB的全方位的功能,更可將載具模組運用在教學上,使更多人可以輕鬆使用。
在未來希望可以將所有載具都發展成一個標準化模組,讓它可以適用在所有想分析的載具上。
In this thesis, a flexible environment for the analysis of autonomous vehicle dynamics and control will be developed. This environment uses the power and flexibility of the simulation and system analysis programs SIMULINK and MATLAB.
Due to MATLAB modular structure, the model can easily be adapted for other aircraft. Aircraft trim and linearization tools have been included to be able to do the whole linear and nonlinear control system design and analysis from within the same MATLAB/SIMULINK environment. So, we just build flight dynamic model and controller to do what we want to.
The tools from this thesis can be used for a broad range of applications in the field of aircraft Stability and Control analysis. Even the current models can readily be used for educational purposes.
In the future, the tools need to be developed further into a standardized analytical tool which must be applicable to virtually any aircraft. If possible, easy links from this environment to the flight-simulator and flight control computers of the aircraft need to be made, in order to shorten the development cycle of automatic control systems.
1.McLean, D., Automatic Flight Control Systems. 1990, Prentice Hall international, Hertfordshire, UK, .
2.McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic Control. . 1973, Princeton University Press, Princeton, New Jersey,.
3.Stevens, B.L., Lewis, F.L., Aircraft Control and Simulation. . 1992.
4.Tomlinson, B.N., Padfield, G.D., Smith, P.R., Computer-Aided control law research; From concept to flight test. . In: AGARD conferenc'e proceedin= on 'Computer Aided Svstem Design and Simulation', 1990.
5.Anon, PC-MATLAB User's Guide, ed. N. The Mathworks Inc., Massachusetts, USA,. 1989.
6.Anon, SIMULINK, a program for simulating dynamic systems, ed. T.M.I. User's Guide, Natick, Massachusetts, USA,. 1992.
7.Rolfe, J.M., Staples, K.J. , Flight Simulation. 1986, Aerospace Series, Cambridge University Press, Cambridge, UK.
8.Colgren, R.D., A workstation for the integrated design and simulation of flight control systems. Lockheed Aeronautical Systems Company, Burbank, California, USA.
9.Stengel, R.F., Sircar, S., Computer-Aided Design of Flight Control Systems. 1991, AIAA-91-2677-CP, Princeton, New Jersey, USA,.
10.Mulder, J.A., Van der Vaart, J.C., Aircraft Responses to Atmospheric Turbulence. 1992, Delft University of Technology (Aerospace Engineering), Delft, .
11.Ruijgrok, G.J.J., Elements of airplane performance. 1990, Delft University Press, Delft.
12.Duke, E.L., Antoniewicz, R.F., Krambeer, K.D., Derivation and Definition of a Linear Aircraft model. NASA Reference Publication 1207, USA, 1988.
13.Staples, J.M.R.a.K.J., Flight Simulation, ed. U. Cambridge University Press. 1986.
14.Padfield, G.D., Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling, ed. R. AIAA Education Series, VA. 1996.
15.Chen, R.T., A simplified rotor system mathematical model for piloted flight dynamics simulation. 1979, Technical Memorandum 78575, NASA.
16.Harris, C., ed. Shock and vibration handbook. ed. N.Y. McGraw-Hill. 1996.
17.Chow, A.M.K.a.C.Y., Foundations of Aerodynamics. 1986, Wiley and Sons, New York.
18.Harris, F.D., Articulated rotor blade flapping motion at low advance ratio. 1972, J. Amer. Helicopter Soc.
19.Bramwell, A.R.S., Bramwell’s Helicopter Dynamics. 2001, AIAA, Reston VA.
20.M. LaCivita, W.M., and T. Kanade, Modeling of small-scale helicopters with integrated first-principles and integrated system identification techniques. Presented at 58th Forum of American Helicopter Society, 2002.
21.B. Mettler, M.T., T. Kanade, and W. Messner, Attitude control optimization for a small-scale unmanned helicopter. 2000, AIAA Guidance, Navigation and Control Conference.
22.Mettler, B., Identification, Modeling and Characteristics of Miniature Rotorcraft. 2002, Kluwer Academic Publishers, Boston, MA.
23.Bramwell, A.R.S., Bramwell’s Helicopter Dynamics. 2001, AIAA, Reston VA.
24.Athans, L.L.a.M. Linear quadratic regulator control. 1996.
25.K. Sprague, V.G., D. Dugail, B. Mettler, and E. Feron, Design and applications of an avionics system for a miniature acrobatic helicopter, in AIAA Digital Avionics Systems Conference. 2001.
26.E. Feron, M.B., J. Paduano, and A. Turevskiy, Time-frequency analysis for transfer function estimation and application to flutter clearance. AIAA Journal of Guidance, Control and Dynamics.
27.McConley, M., Draper small autonomous aerial vehicle dynamic model. 1998.
28.Leishman, J.G., Principles of helicopter aerodynamics. 2000, Cambridge University Press, New York.
29.Wever, P.N.H., Ontwerp en implernentatie van de regelwetten van het automatisch besturingssysteem van de De Havilland DHC-2 'Beaver'. 1993, DelR University of Technology (Aerospace Engineering), Delft.
30.Brandt, A.P., Van den Broek, P.Ph., Vliegeigmschappen 2. 1984, Delft University of Technology.
31.McLean, D., Automatic Flight Control Systems. 1990, Prentice Hall international, Hertfordshire, UK.
32.McRuer, D., Ashkenas, I., Graham, D., Aircrafi Dynamics and Automatic Control. 1973, Princeton University Press, Princeton, New Jersey, USA,.
33.Abbink, F.J., Vliegtuiginstrumentatie I/IZ (in Dutch). 1984/1983, Delft University of Technology (Aerospace Engineering), Delft.
34.Wever, P.N.H., Een analyse van de regelwetten van het automatische besturings-systeem van het laboratoriumvliegtuig de De Havilland DHC-2 'Beaver' 1992, Interim report, Delft University of Technology.
35.Kruijsen, E.A.C., Design and evaluation of automatic approach control laws for the Beaver's digital autopilot. 1990, Graduate's thesis, Delft University of Technology (Aerospace Engineering), Delft.
36.Rauw, M.O., Using SIMULINK for Nonlinear Analysis of Aircraj? Control Systems. 1992, Interim report, Delft University of Technology (Aerospace Engineering), Delft.
37.Gerlach, O.H., Lecture Notes on Aircraft Stn hility and Control. 1981, Delft University of Technology.
38.Tjee, R.T.H., Mulder, J.A., Stability and Control Derivatives of the De Havilland DHC-2 'Beaver' aircraft. 1988, DelR University of Technology.
39.McRuer, D., I. Ashkenas, and D. Graham, Aircraft Dynamics and Automatic Control. 1973, Princeton, NJ: Princeton University Press.
40.Tischler, M.B., A Multidisciplinary Flight Control Development Environment and Its Application to a Helicopter. 1999, IEEE.
41.Tischler, M.B.a.M.G.C., Frequency-Response Method for Rotorcraft System Identification: Flight Application to BO-105 Coupled Rotor/Fuselage Dynamics. Journal of the American Helicopter Society.
42.Key, D.L., Handling Qualities Requirements For Military Rotorcrafts. 1996, United States Army and Troop Command.
43.Kaminer, I., Pascoal, A., Hallberg, E., and Silvestre, C., Trajectory Tracking for Autonomous Vehicles: An Integrated Approach to Guidance and Control. AIAA Journal of Guidance, Control, and Dynamics, 1998.
44.Silvestre, C., Pascoal, A., and Kaminer, I., On the Design of Gain-Scheduled Trajectory Tracking Controllers. International Journal of Robust and Nonlinear Control, 2002.
45.Cabecinhas, D., Silvestre, C., Rosa, P., and Cunha, R., Path Following Control for Coordinated Turn Aircraft Maneuvers. AIAA Guidance and Control Conference, 2007.
46.Lim, J., Song, J., and Sung, K. M., Forward-Backward Time Varying Forgetting Factor Kalman Filter based DOA Estimation Algorithm for UAV Autolanding. 2002, Seoul National University.
47.Juang, J.-G., Chang, H.-H., and Cheng, K.-C., Intelligent Landing Control Using Linearized Inverse Aircraft Model. Proceedings of the American Control Conference - Anchorage, 2002.
48.Shue, S.-P.a.A., R. K., Design of Automatic Landing Systems Using Mixed H 2 /H ∞ Control. Journal of Guidance, Control and Dynamics, 1999.
49.Frazzoli, E., Dahleh, M., and Feron, E., A Hybrid Control Architecture for Aggressive Maneuvering of Autonomous Aerial Vehicles. In Advances in Systems Theory, Kluwer Academic Publishers, 1999.
50.Ghaoui, L.E.a.N., S. I., ed. Advances in Linear Matrix Inequality Methods in Control. Society for Industrial and Applied Mathematics. 1999.
51.Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V., ed. Linear Matrix Inequalities in Systems and Control Theory. Society for Industrial and Applied Mathematics. 1994.