簡易檢索 / 詳目顯示

研究生: 林家陞
Lin, Jia-Shen
論文名稱: 較新的點雲配準方法對於各應用場域實用性分析
Analyzing the Applicability of Cutting-edge Point Cloud Registration Techniques across Diverse Application Domains.
指導教授: 蔡佩璇
Tsai, Pei-Hsuan
學位類別: 碩士
Master
系所名稱: 敏求智慧運算學院 - 智慧科技系統碩士學位學程
MS Degree Program on Intelligent Technology Systems
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 99
中文關鍵詞: 點雲配準基於特徵的配準深度學習全局配準多領域分析
外文關鍵詞: Point Cloud Registration, Feature-Based Registration, Deep Learning, Global Registration, Cross-Domain Analysis
相關次數: 點閱:127下載:50
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在當今技術飛速發展的時代,點雲配準技術的應用不僅日益增加,而且已經滲透到多個領域,從工業自動化到城市規劃,再到醫療影像分析。面對實際應用中的多重挑戰,如數據噪音、不完整性和大規模數據處理,本研究進行了深入的探索,旨在全面理解這些問題並提出有效的解決策略。我們首先對點雲配準的基本概念和當前的研究趨勢進行了詳細的回顧。接著,我們深入探討了點雲數據的預處理和優化方法,以確保資料的質量和配準的準確性。在此基礎上,我們制定了一套策略,根據不同的應用場景和數據特性,選擇最合適的配準算法。為了驗證這些算法的效果,我們進行了一系列全面的實驗測試,並使用了多種基於特徵的和全局配準方法。透過先進的可視化技術,我們將結果呈現在簡明的圖表中,使讀者能夠迅速瞭解各種方法的優劣。此外,我們還提供了詳細的數據表格,對於各種方法在不同情境下的效果進行了對比分析,從而幫助讀者明確哪種方法最適合他們的需求。本研究不僅提供了點雲配準的深入分析,更提供了實際測試結果,並且給予建議。

    In this era of rapid technological advancement, the application of point cloud registration technology is not only increasing day by day, but has also permeated multiple fields, ranging from industrial automation to urban planning, and extending to medical image analysis. Faced with multiple challenges in practical applications, such as data noise, incompleteness, and large-scale data processing, this study conducts an in-depth exploration with the aim of comprehensively understanding these issues and proposing effective solutions.
    We begin by providing a detailed review of the basic concepts of point cloud registration and the current trends in research. Subsequently, we delve into the methods of preprocessing and optimizing point cloud data to ensure the quality of the data and the accuracy of the registration. Building on this foundation, we have developed a set of strategies to select the most suitable registration algorithm based on different application scenarios and data characteristics.
    To validate the effectiveness of these algorithms, we have conducted a series of comprehensive experimental tests, employing a variety of feature-based and global registration methods. Utilizing advanced visualization techniques, we present the results in clear and concise charts, enabling readers to quickly grasp the strengths and weaknesses of various methods. In addition, we provide detailed data tables for comparative analysis of the effects of various methods in different scenarios, thereby assisting readers in clearly identifying which method best suits their needs.

    摘   要 i ABSTRACTii 致謝 vi Content vii List of Tables x List of Figures xi Chapter 1 緒論 1 1.1 前言 1 1.2 點雲配準與其挑戰 2 Chapter 2 背景探討 5 2.1 點雲配準應用 5 2.2 點雲配準流程 6 2.2.1 點雲資料前處理 7 2.2.2 基於特徵的配準 9 i. 特徵提取 9 ii. 特徵匹配 12 iii. 異常值移除 13 2.2.3 全局配準 15 2.2.4 ICP家族 19 Chapter 3 實驗架構 21 3.1 點雲配準應用場域分類以及資料集 21 3.1.1 場域分類 21 3.1.2 資料集選用 23 3.2 點雲配準資料前處理方法 26 3.3 演算法對於各場景的設計 29 3.3.1 依照應用場景設計 29 3.3.2 演算法搭配 30 3.4 針對各種演算法做魯棒性測試 31 3.5 ICP家族微調效果測試 33 3.6 衡量指標 34 3.6.1 Rotation Error and Translation Error 34 3.6.2 RMSE 35 3.6.3 Runtime 35 3.6.4 Visualization 36 Chapter 4 實驗驗證與結果比較 37 4.1 點雲配準資料前處理方法 38 4.1.1 降噪 38 4.1.2 下採樣 44 4.1.3 跨源點雲挑戰 48 4.2 演算法對於各場景的設計 50 4.2.1 單一物件情境 50 4.2.2 室內情境 54 4.2.3 室外情境 58 4.2.4 自駕車情境 62 4.3 針對各種演算法做魯棒性測試 67 4.3.1 異常值測試 67 4.3.2 雜訊測試 70 4.3.3 重疊率測試 73 4.4 ICP家族微調效果測試 77 Chapter 5 結論與未來展望 80 References 82

    [1] Xie, L., Zhu, Y., Yin, M., Wang, Z., Ou, D., Zheng, H., Liu, H., & Yin, G. (2022). "Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile. " Mechanical Systems and Signal Processing, 178, 109243. ISSN 0888-3270.
    [2] Costantino, D., Pepe, M., & Restuccia, A. (2023). "Scan-to-HBIM for conservation and preservation of Cultural Heritage building: the case study of San Nicola in Montedoro church (Italy). " Applied Geomatics, 15, 607–621.
    [3] A. Paigwar, Ö. Erkent, D. Sierra-Gonzalez and C. Laugier, "GndNet: Fast Ground Plane Estimation and Point Cloud Segmentation for Autonomous Vehicles," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 2150-2156
    [4] Yuze He, Li Ma, Zhehao Jiang, Yi Tang, and Guoliang Xing. 2021. " VI-eye: semantic-based 3D point cloud registration for infrastructure-assisted autonomous driving. " In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (MobiCom '21). Association for Computing Machinery, New York, NY, USA, 573–586.
    [5] D. Xiao et al., "Estimating Reference Bony Shape Models for Orthognathic Surgical Planning Using 3D Point-Cloud Deep Learning," in IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 8, pp. 2958-2966, Aug. 2021
    [6] Ackermann, J., Liebmann, F., Hoch, A., Snedeker, J. G., Farshad, M., Rahm, S., Zingg, P. O., & Fürnstahl, P. (2021). "Augmented Reality Based Surgical Navigation of Complex Pelvic Osteotomies—A Feasibility Study on Cadavers. " Applied Sciences, 11(3), 1228.
    [7] Chetverikov, D., Svirko, D., Stepanov, D., & Krsek, P. (2002). "The Trimmed Iterative Closest Point algorithm. " Proceedings of the 2002 International Conference on Pattern Recognition
    [8] Derpanis, K. G. (2010). "Overview of the RANSAC Algorithm. " Image Rochester NY, 4(1), 2-3.
    [9] Huang, X., Zhang, J., Fan, L., Wu, Q., & Yuan, C. (2017). "A systematic approach for cross-source point cloud registration by preserving macro and micro structures. " IEEE Transactions on Image Processing
    [10] X. Huang, Z. Xu, G. Mei, S. Li, J. Zhang, Y. Zuo, Y. Wang, "GenReg: Deep Generative Method for Fast Point Cloud Registration", arXiv:2111.11783 [cs.CV], 2021.
    [11] W. Liu et al., "Matching 2D Image Patches and 3D Point Cloud Volumes by Learning Local Cross-domain Feature Descriptors," 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Lisbon, Portugal, 2021, pp. 516-517, doi: 10.1109/VRW52623.2021.00140.
    [12] X. Ling, R. Qin, "A graph-matching approach for cross-view registration of over-view and street-view based point clouds," ISPRS Journal of Photogrammetry and Remote Sensing, Volume 185, 2022, Pages 2-15, ISSN 0924-2716, doi: 10.1016/j.isprsjprs.2021.12.013.
    [13] Rusu, R. B., Blodow, N., & Beetz, M. (2009, May). "Fast point feature histograms for 3D registration. " In 2009 IEEE international conference on robotics and automation (pp. 3212-3217). IEEE.
    [14] Choy, C., Park, J., & Koltun, V. (2019). "Fully convolutional geometric features. " In Proceedings of the IEEE/CVF international conference on computer vision (pp. 8958-8966).
    [15] Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., & Schindler, K. (2021). "Predator: Registration of 3d point clouds with low overlap. " In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition (pp. 4267-4276).
    [16] W. Li et al., "Approximate Nearest Neighbor Search on High Dimensional Data — Experiments, Analyses, and Improvement," in IEEE transactions on Knowledge and Data Engineering, vol. 32, no. 8, pp. 1475-1488, 1 Aug. 2020, doi: 10.1109/TKDE.2019.2909204.
    [17] M. Greenspan and M. Yurick, "Approximate k-d tree search for efficient ICP," Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings., Banff, AB, Canada, 2003, pp. 442-448, doi: 10.1109/IM.2003.1240280.
    [18] Muja, M., & Lowe, D. (2009). "Flann-fast library for approximate nearest neighbors user manual. " Computer Science Department, University of British Columbia, Vancouver, BC, Canada, 5, 6.
    [19] Le, H. M., Do, T. T., Hoang, T., & Cheung, N. M. (2019). "SDRSAC: Semidefinite-based randomized approach for robust point cloud registration without correspondences. " In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 124-133).
    [20] Li, J., Hu, Q., & Ai, M. (2021). "Point cloud registration based on one-point RANSAC and scale-annealing biweight estimation. " IEEE transactions on Geoscience and Remote Sensing, 59(11), 9716-9729.
    [21] Yang, H., Shi, J., & Carlone, L. (2020). "Teaser: Fast and certifiable point cloud registration. " IEEE transactions on Robotics, 37(2), 314-333.
    [22] Yan, L., Wei, P., Xie, H., Dai, J., Wu, H., & Huang, M. (2022). "A new outlier removal strategy based on reliability of correspondence graph for fast point cloud registration. " IEEE transactions on Pattern Analysis and Machine Intelligence.
    [23] Bustos, A. P., & Chin, T. J. (2017). "Guaranteed outlier removal for point cloud registration with correspondences. " IEEE transactions on pattern analysis and machine intelligence, 40(12), 2868-2882.
    [24] Zhou, Q. Y., Park, J., & Koltun, V. (2016). "Fast Global Registration. " In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14 (pp. 766-782). Springer International Publishing.
    [25] Komarichev, A., Zhong, Z., & Hua, J. (2019). "A-cnn: Annularly convolutional neural networks on point clouds. " In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7421-7430).
    [26] Zhao, H., Jiang, L., Jia, J., Torr, P. H., & Koltun, V. (2021). "Point transformer. " In Proceedings of the IEEE/CVF international conference on computer vision (pp. 16259-16268).
    [27] Choy, C., Dong, W., & Koltun, V. (2020). "Deep Global Registration. " In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2514-2523).
    [28] Qin, Z., Yu, H., Wang, C., Guo, Y., Peng, Y., & Xu, K. (2022). "Geometric Transformer for fast and robust point cloud registration. " In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11143-11152).
    [29] Zhang, J., Yao, Y., & Deng, B. (2021). "Fast and robust iterative closest point. " IEEE transactions on Pattern Analysis and Machine Intelligence, 44(7), 3450-3466.
    [30] Segal, A., Haehnel, D., & Thrun, S. (2009, June). "Generalized-icp. " In Robotics: science and systems (Vol. 2, No. 4, p. 435).
    [31] Curless, B., & Levoy, M. (1996). "A Volumetric Method for Building Complex Models from Range Images. " Computer Graphics (SIGGRAPH 1996 Proceedings).
    [32] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). "3d shapenets: A deep representation for volumetric shapes. " In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1912-1920).
    [33] Pomerleau, F., Liu, M., Colas, F., & Siegwart, R. (2012). "Challenging data sets for point cloud registration algorithms. " The International Journal of Robotics Research, 31(14), 1705-1711.
    [34] Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., & Funkhouser, T. (2017). "3dmatch: Learning local geometric descriptors from rgb-d reconstructions. " In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1802-1811).
    [35] Geiger, A., Lenz, P., & Urtasun, R. (2012). "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. " Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).
    [36] Huang, X., Mei, G., Zhang, J., & Abbas, R. (2021). "A comprehensive survey on point cloud registration. " arXiv preprint arXiv:2103.02690.
    [37] Cohen, M. B., Lee, Y. T., Musco, C., Musco, C., Peng, R., & Sidford, A. (2015, January). "Uniform sampling for matrix approximation. " In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science (pp. 181-190).
    [38] Khoury, M. (2020). "Geometric Sampling Theory, Triangulations, and Robust Machine Learning. " Doctoral dissertation, EECS Department, University of California, Berkeley.
    [39] J. Li, "A Practical $O(N^2)$O(N2) Outlier Removal Method for Correspondence-Based Point Cloud Registration," in IEEE transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 8, pp. 3926-3939, 1 Aug. 2022, doi: 10.1109/TPAMI.2021.3065021.
    [40] Y. Zhong, "Intrinsic shape signatures: a shape descriptor for 3D object recognition[C]", IEEE International Conference on Computer Vision Workshops, pp. 689-696, 2009.
    [41] G. Zhao, Z. Guo, X. Wang, H. Ma, "SphereNet: Learning a Noise-Robust and General Descriptor for Point Cloud Registration", arXiv:2307.09351 [cs.CV], under review for IEEE TRANSAC[8]tions on Circuits and Systems for Video Technology, 2023.
    [42] R. A. Srivatsan, T. Zodage, H. Choset, "Globally Optimal Registration of Noisy Point Clouds", arXiv:1908.08162 [cs.CV], 2019.
    [43] Y. Wang, C. Yan, Y. Feng, S. Du, Q. Dai and Y. Gao, "STORM: Structure-Based Overlap Matching for Partial Point Cloud Registration," in IEEE transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 1135-1149, 1 Jan. 2023, doi: 10.1109/TPAMI.2022.3148308.
    [44] K. Fu, S. Liu, X. Luo and M. Wang, "Robust Point Cloud Registration Framework Based on Deep Graph Matching," 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 8889-8898, doi: 10.1109/CVPR46437.2021.00878.
    [45] Y. -X. Zhang, Z. -L. Sun, Z. Zeng and K. -M. Lam, "Partial Point Cloud Registration With Deep Local Feature," in IEEE Transactions on Artificial Intelligence, vol. 4, no. 5, pp. 1317-1327, Oct. 2023, doi: 10.1109/TAI.2022.3201505.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE