| 研究生: |
蔡立農 Tsai, Li-Nung |
|---|---|
| 論文名稱: |
航機維修可靠性管制計畫之研究 A Study of Aircraft Maintenance Reliability Control Program |
| 指導教授: |
戴佐敏
Dai, Dzwo-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 可靠性管制計劃 、系統模擬 、變異數分析 、羅吉斯模式 |
| 外文關鍵詞: | Reliability Control Program, ANOVA, Logistic Regression, Simulation |
| 相關次數: | 點閱:81 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
航空公司之可靠性管制計畫(Reliability Control Program)目的在於透過監控航機或附件之性能表現,探究造成航機性能可靠性不佳之主因,並且執行與維護計畫、航機系統、零附件與訓練需求有關之必要改進方案,確保航機系統與附件的故障率落在既定的可接受範圍之內。
在航機系統的可靠性表現方面,主要透過個別航機系統之每月故障延誤與取消率(Technical Delay and Cancellation Rate)來監控航機系統表現狀態,針對三月移動平均比率(3-month rolling average)超出上限控制值(Upper Control Limit, UCL)的航機系統進行分析與檢討其成因,並且提出改善方案,加以改進。
本研究之目的在於依據實際之航機故障延誤與取消資料,應用變異數分析、羅吉斯模式等不同面向的方法,針對包括延誤次數、延誤時間資料進行分析,探討現行航空公司可靠性管制計畫上限控制值設定的可能缺點。並且提出包括現行做法共四種上限控制值設定方式,藉由系統模擬(Simulation)實驗來測試這些上限控制值的設定,透過包括成功警告能力、錯誤警告以及延誤成本等幾方面進行討論。
結果發現,考慮成功警告能力與錯誤警告情況所造成之影響,本研究建議採用連續警告才進行調查的方式來進行管控較為合適。而在連續警告才進行調查的可靠性管控方式下,期望調查成本在所有的模擬情境中皆低於期望延誤成本,航空公司應該以減少延誤成本為首要目標,故使用第一年之三月平均延誤率平均值90%信賴區間上限值做為次年之上限控制值,再以第二年每月之三月平均延誤率進行比對管控的方式來設定上限控制值較為合適。
若航空公司進行成因調查的成本較延誤成本高40%以上時,則其應該以減少調查的發生為主要目標,故建議可以採用第一年三月平均延誤率95%信賴區間上限值做為上限控制值,並以第二年每月之三月平均延誤率進行比對的方式較佳。
Airlines’ reliability control program is aiming at discovering root causes of poor aircraft system or component reliability through monitoring their performances and execute appropriate corrective actions involving changes of aircraft maintenance program(AMP), modification of aircraft system or component, and relevant training requirements to ensure the reliability performance of aircraft system or component are within the predetermined and acceptable level.
As for aircraft system reliability, it is the monthly technical delay and cancellation rate that is used to monitor each aircraft systems’ performance respectively. For those aircraft systems whose three-month rolling average delay rate exceed the predetermined upper control limit(UCL), which will generate “Alert”, engineers should conduct investigations to find out root causes and propose corrective actions to restore the system performance to an acceptable level.
Therefore, the goal of this research is to analyze real technical delay and cancellation data through different approaches including analysis of variance(ANOVA) and logistic regression modeling to discuss the possible deficiencies of setting up UCL. At the same time, this research also proposes three different methods of setting up the UCL, and further applies the methodology of system simulation to conduct the experimental test of those proposed settings.
The result of this research recommends that in considering the successful alert ability, false alert conditions, and flight delay and investigation cost, it is better to conduct investigations when continued alert signal appeared, and use the upper limit of 90% confidence interval of previous year’s average 3-month rate to set up next year’s UCL and compare it with the 3-month rate of the next year. On the other hand, if the cost of each investigation is 40% higher than each flight delay cost, it is suggested that setting up the UCL with the upper limit of 95% confidence interval of the previous year’s average monthly rate, and compare it to next year’s 3-month rolling average rate will be more suitable.
The main contribution of this research is to provide a guideline of adjusting UCL. However, exactly which method to apply is deeply depending on each airlines policy and the difference of its flight delay and investigation cost.
參考文獻
[1] 郭兆書,民航維修觀念之演進,航太工業通訊第三十四期。
[2] 蔡清益、謝東憬,簡介美國航空公司可靠性計畫,民航季刊 第
二卷 第一期 民國八十九年三月。
[3] 航空器飛航作業管理規則,民國九十三年十二月三十日修定。
[4] FAA , Advisory Circular 120-17A, entitled “Maintenance Control by
Reliability Methods ”, 1978。
[5] Reliability Control Program Manual, 8th edition, China Airlines
[6] Harry A. K., Ph.D. Aviation Maintenance Management, McGraw-Hill 2004
[7] Blanchard B.S. and Fabrycky, W.J., “System Engineering and Analysis”,
Prentice Hall, Inc., Eaglewood Cliffs, New Jersey U.S.A ., 1998.
[8] 褚昆成「可靠性理論與實務」,中興管理顧問公司,台北,民國七十三年。
[9] 鄭梅峰,「以妥善率為基礎之初次備份件存貨策略研究-國軍某武器系統之模擬分
析」,國防大學國防管理學院碩士論文,民國九十二年。
[10] ZeiglerB.P., “Theory of the Modeling and Simulation”, John Wiley and
Sons, New York, 1976.
[11] 張文彬,「系統模擬應用於直昇機保修作業績效分析之研究」,國防管理學院資源管
理研究所碩士論文,民國九十三年。
[12] 林竹青,「年齡縮減之不完全預防維護模型參數估計」,朝陽科技大學工業工程與管
理係碩士論文,民國九十三年
[13] 林宏澤、林清泉編著,「系統模擬」高立圖書有限公司,台北,民國八十年。
[14] Taylor H.M. and Karlin S., ”An Introduction to Stochastic Modeling”,
San Diego, California, 1998
[15] 江瑞清,「生產系統中利用製程不良率評估設備預防維護之研究」中原大學工業工程
研究所碩士論文,民國九十二年。
[16] Hogg R.V. and Tanis E.A., “Probability and Statistical Inference”,
Pearson Prentice Hall, Pearson Education, Inc. 7th edition, 2005
[17] 張智星,「MATLAB程式設計與應用」,清蔚科技,台北,1999。
[18] 鄭錦聰,「MATLAB程式設計基礎篇」,全華科技圖書,台北,1990。
[19] 陳順宇,「統計學」,華泰書局,台北,民國八十五年。
[20] 江建良,「統計學」,龍騰文化事業,台北,民國九十三年。
[21] Anderson, Sweeney, Williams, “Statistics for Business and Economics”
South-western College Publishing, 7th edition, 1998.
[22] 中華航空公司網站 http://www.china-airlines.com/ch/index.htm
[23] Wu C.L., Caves R.E., “Aircraft Operational Cost and Turnaround
Efficiency at Airports”, Journal of Air Transport Management, Vol.6,
pp201-208, 2000
[24] Wu C.L., Cave R.E., “Towards the Optimisation of the Schedule
Reliability of Aircraft Rotations ”, Journal of Air Transport
Management, Vol.8, pp419-426, 2002
[25] 經濟部網站 http://www.moea.gov.tw
[26] 行政院主計處網站 http://www.dgbas.gov.tw
[27] FAA Airworthiness Directive, AD 2005-17-09
[28] 王濟川、郭志剛, Logistic 迴歸模型-方法與應用,五南圖書出版公司,台北,民
國九十年。
[29] Vermunt J.K., “Log-linear models”, Encyclopedia of Statistics in
Behavioral Science, pp1082-1093, Wiley Chichester, U.K., 2005.