| 研究生: |
黃科翰 Han, Huang-Ko |
|---|---|
| 論文名稱: |
分子動力模擬配合碎形理論運用於粗糙面滑動摩擦為之研究 The Study in the Frictional Behavior Arising at Two Sliding Rough Surfaces through the Molecular Dynamic Simulation and Fractal Theory |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 平行化處理 、分子動力學 、碎形理論 |
| 外文關鍵詞: | Parallel algorithm, Fractal Theory, Molecular Dynamic Simulation |
| 相關次數: | 點閱:209 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
要利用統計或碎形理論研究光滑平面或光滑曲面對粗糙平面的接觸行為之前,必須先分析單一粗糙峰的變形行為。傳統單一粗糙峰之接觸力學模型皆是建立於不考慮分子間作用力的情況;然而在微觀尺度之下,以往在巨觀尺度忽略的分子間作用力諸如靜電力、凡得瓦爾力或黏著力(Adhesion force)在如此小的尺度之下,卻佔有極重要的地位,因此使用接觸力學模型來分析微觀尺度下單一粗糙峰變形行為並不適當。本文以分子動力學模擬(MD Simulation)來觀察微觀尺度下銅膜及鑽石膜之單一粗糙峰變形行為,並假設粗糙峰為半圓球形。銅之粗糙峰模型由曲率半徑 的半圓球及底材共126341顆銅原子組成;鑽石之粗糙峰模型由曲率半徑 的半圓球以44173顆碳原子組成。上平板是由碳原子組成的鑽石平面,尺寸為 及 24.18nm×24.18nm×0.62nm及15.26nm×15.26nm×0.62nm,分別由73984顆及29584顆碳原子組成。為了增加模擬的效率,本文以平行運算原子分散法配合分子動力學進行模擬。
模擬為絕熱狀態,溫度保持為300K,模擬過程為鑽石上平板下壓半圓球至預設干涉量後再進行滑動。由分子動力學模擬結果可得銅及鑽石半圓球在微觀尺度下接觸負載及接觸面積對干涉量的關係式和滑動摩擦力及摩擦係數。模擬結果顯示光滑平面對半圓球粗糙峰滑動之間的滑動摩擦力表現出振盪現象,而且非金屬材料鑽石半圓球的振盪現象比金屬材料銅半圓球劇烈。在相同的負載速度下,接觸負載、接觸面積、摩擦力及摩擦係數皆會隨著干涉量愈大而增加。在相同負載速度及干涉量下,隨著滑動速度的加快,摩擦力及摩擦係數都有上升的趨勢,這說明了摩擦力和滑動速度有關。
利用分子動力學模擬得到微觀尺度下單一粗糙峰之變形行為再配合實驗得到的碎形及統計參數值,並假設粗糙平面上粗糙峰為高斯機率分佈。則碎形理論是利用上述結果再對尺寸分佈函數(size distribution function)n(a)作積分,統計理論對高度分佈函數g(z)作積分,即可得到利用碎形及統計理論將銅膜及鑽石膜單一粗糙峰變形行為擴展至光滑平面及曲面對粗糙平面的接觸行為。結果顯示分子動力學模擬所得之接觸負載比傳統接觸模型計算所得要大,而分子動力學模擬所得之接觸面積比全塑性接觸模型計算所得小,這是由於分子間作用力造成的。而不論是由統計或碎形理論所得之接觸負載、接觸面積,其值都相當接近,但與實驗所得之值有一定的差距。根據分子動力學模擬與全塑性接觸模型比較結果,可知利用分子動力學模擬在微觀尺度下之接觸行為是比較合適的。
Before analysing the microcontact behavior between a rigid smooth flat plane and a rigid smooth semisphere in contact with a deformable rough flat plane by using the statistic or fractal theory, the deformed behavior about the single asperity must be established. The interaction effect between the molecules like adhesion force or Van der Waals’ force which could be neglected under the macroscopic scale will have a significant effect when under the microscopic scale. Because the traditional contact theory do not take the molecular interaction effect into account, use the traditional contact theory to analyse the microcontact behavior about the single asperity is unsuitable. Molecular dynamics(MD) simulation was carried out to investigate the microcontact behavior of the single copper and diamond asperity, assumed that the single asperity was semisphere. The single copper asperity composed of the radius of 6.2nm copper semisphere and the copper substrate, was comprised by 126341 copper atoms, the radius of 4.8nm single diamond semisphere was comprised by 44173 carbon atoms. The upper flat diamond plane was comprised by 73984 and 29584 carbon diamonds respectively. For increasing the simulation efficiency, the parallel algorithms atom decomposition (AD) method combined with MD was adopted.
During the simulation, the adiabatic thermal condition was imposed, and the starting temperature was 300K. The upper flat diamond plane indented to the copper and diamond semisphere initially, and then it slipped through the copper and diamond semisphere. The dependence of the contact load and contact area on the interference (δ) and the dynamic frictional force and coefficient can be determined by MD simulation. From the simulation results, the dynamic frictional force had a oscillated behavior when flat diamond plane slipped through the semisphere, and furthermore the oscillated behavior was stronger when flat diamond plane slipped through the nonmetal material diamond semisphere. The contact load、contact area、dynamic frictional force and dynamic frictional coefficient would get growing as the interference(δ) increased under the same loading velocity. Besides, the dynamic frictional force and dynamic frictional coefficient would get growing as the sliding velocity increased under the same loading velocity and interference(δ), it showed that the dynamic frictional force and dynamic frictional coefficient was related to the sliding velocity.
By Combined the single asperity deformed behavior obtained by MD simulation and the fractal and statistic parameters obtained by Atomic Force Microscope(AFM), also assumed that the rough surface satisfied Gaussian distribution, the fractal theory was integrated with the size distribution function n(a), the statistic theory was integrated with the Gaussian distribution function, we could get the microcontact behavior between a rigid smooth flat plane and rigid smooth semisphere to deformable rough flat plane. The results revealed that the contact load obtained by MD simulation was greater than the contact load obtained by traditional contact theory, and the contact area obtained by MD simulation was smaller than the contact area obtained by traditional contact theory, it was due to the molecular interaction effect. It got the near contact load and contact area whether employed the fractal theory or statistic theory, but far smaller than the results obtained by the experiment. Finally, it could be showed that used MD simulation was more suitable than used traditional contact theory to investigate the microcontact behavior.
1.J. A. Greenwood and J. B. P. Williamson, 1966, “Contact of Nominally Flat Surface,” Proceedings of Royal Society of London, Series A, A295, pp.300-319.
2.J. A. Greenwood and J. H. tripp, 1967, “The Elastic Contact of Rough Spheres,” ASME Journal of Applied Mechanics, Vol.34, pp.153-159.
3.D. J. Whitehouse and J. F. Archard, 1970, “The Properties of Random Surfaces of Significance in Their Contact,” Proceedings of Royal Society of London, Series A, Vol.316, pp.97-121.
4.T. Hisakado, 1974, “Effects of Surface Roughness on Contact between Solid Surfaces,” Wear, Vol.28, pp.217-234.
5.K. L. Johnson, 1989, Contact Mechanics, Cambridge University Press.
6.W. R. Chang and I. Etsion, D. B. Bogy, 1987, “An Elastic-Plastic Model for the Contact of Rough Surfaces,” ASME Journal of Tribology, Vol.120, pp.82-88.
7.L. Kogut and I. Etsion, 2003, “A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surface,” Tribology Transaction, Vol.46, pp383-390.
8.D. J. Whitehouse, 2003, Handbook of Surface and Nanometrology, Institute of Physics Publishing, Bristol, p.99.
9.B. B. Mandelbrot, 1982, The Fractal Geometry of Nature, W. H. Freeman, New York.
10.J. J. Gagnepain and C. Roques-Carmes, 1986, “Fractal Approach to Two-Dimensional and Three-Dimensional Surface Roughness,” Wear, Vol.109, pp.119-126
11.A. Majumdar and C. L. Tien, 1990, “Fractal Characterization and Simulation of Rough Surfaces,” Wear, Vol.136, pp.313-327.
12.F. F. Ling, 1987, “Scaling Law for Contoured Length of Engineering Surface,” Journal of Applied Physics, Vol.62, pp.2570-2572.
13.A. Majumdar, and B. Bhushan, 1991, “Fractal Model of Elastic-Plastic Contact Between Rough Surfaces,” ASME Journal of Tribology, Vol.113, pp.1-11.
14.B. Bhushan, and A. Majumdar, 1992, “Elastic-Plastic Contact for Bifractal Surfaces,” Wear, Vol.153, pp.53-64.
15.W. Yan, and K. Komvopoulos, 1998, “Contact Analysis of Elastic-Plastic Fractal Surfaces,” Journal of Applied Physics, Vol.84, pp.3617-3624.
16.J. Gao., W. D. Luedtke, D. Gourdon and M. Ruths, 2004, “From the Molecular to the Macroscopic Scale,” J. Phys. Chem. B. Vol.108, pp.3410-3425.
17.J. Krim, 2002,”Friction at Macroscopic and Microscopic Length Scales,” Am. J. Phys., Vol.70, pp890-897.
18.D. Dowson, 1998, History of Tribology, Professional Engineering Publishing London.
19.G. Amontons, 1699, “De la Resistance Cause dans les Machines,” Mem. Del’Academie Royale A, pp.275-282.
20.U. Landman, W. D. Luedtke and E. M. Ringer, 1992, “Atomistic Mechanisms of Adhesive Contact Formation and Interfacial Processes,” Wear, Vol.153, pp.3.
21.J. A. Nieminen, A. P. Sutton and J. B. Pethica, 1992, “Static Junction Growth During Frictional Sliding of Metals,” Acta Metall. Mater., Vol.40, pp2503-2509.
22.J. A. Harrison, C. T. White, R. J. Colton and D. W. Brenner, 1992, “Molecular Dynamics Simulations of Atomic Scale Friction of Diamond,” Phys. Rev. B, Vol.46, pp.9700-9708.
23.A. Buldum, S. Ciraci and Inder P. Batra, 1997, “Contact Nanoindentation and Sliding Friction,” Phys. Rev. B, Vol.57, pp.2468-2476.
24.Bin Li, P. C. Clapp, J. A. Rifkin and X. M. Zhang, 2001, “Molecular Dynamics Simulation of Stick-Slip,” J. Appl. Phys., Vol.90, pp.3090-3094.
25.D. Tabor, 1951, The Hardness of Metals, Oxford, Oxford University.
26.L. Kogut, and I. Etsion, 2002, “Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat,” ASME Journal of Applied Mechanics,” Vol.69, pp.657-662.
27.B. B. Mandelbrot, 1982, The Fractal Geometry of Nature, W. H. Freeman, New York.
28.S-M. F. Nee, 1988, “Ellipsometric Analysis of Surface Roughness and Texture,” Appl. Opt., Vol.27, pp.2819-2831.
29.B. Mandelbrot, D. Passoja and A. Paullay, 1984, “Fractal Character of Fracture Surfaces of Metals,” Nature, Vol.308, pp.721.
30.G. Binning, H. Rohrer and C. Gerber, 1983, “ Reconstruction on Si(111) Resolved in Real Space,” Phys. Rev. Lett., Vol.50, pp120-123.
31.G. Binning, C. F. Quate and C. Gerber, 1986, “Atomic Force Microscope,” Phys. Rev. Lett., Vol.56, pp.930-933.
32.S. Chester, H. Y. Wen, M. Lundin and G. Kasper, 1989, “Fractal-Based Characterization of Surface Texture,” Appl. Surf. Sci., Vol.40, pp.185-192.
33.J. P. Carrejo, T. Thundat, L. A. Nagahara, S. M. Lindsay and A. Majumdar, 1991, “Scanning Tunneling Microscopy Investigations of Polysilicon Films under Solution,” J. Vac. Sci. Technol. B, Vol.9, pp955-959.
34.J. Nogues, J. L. Costa and K. V. Rao, 1992, “Fractal Dimension of Thin Film Surfaces of Gold,” Physica A, Vol.182, pp.532-541.
35.B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot and S. W. Zucker, 1989, “Evaluating the fractal dimension of profiles,” Phys. Rev. A, Vol.39, pp.1500-1512.
36.T. R. Thomas, Rough Surface, pp.105-110.
37.J F. Luo and D. A. Domfeld, 2001, “Material remove Mechanism in Chemical Mechanical Polishing: Theory and Modeling,” IEEE. Transactions on Semiconductor Manufacturing, Vol.14, No.2, pp.112-133.
38.M. V. Berry, 1979, “Diffractals,” J. Phys. A:Math Gen ., Vol.12, No.6, pp.781-797.
39.J. A. Ogilvy, 1991, “Numerical Simulation of Friction between Contacting Rough Surfaces,” Journal of Physics D: Applied Physic, Vol.24, pp.2098-2109.
40.B. Bhushan, 1999, Micro/Nano Tribology, pp.217-223.
41.M. S. Longuet-Higgins, 1957, “The Statistical Analysis of a Random, Moving Surface,” Philos. Trans. R. Soc. London, Series A, Vol.249, pp.321-387.
42.A. W. Bush, R. D. Gibson and G. P. Keogh, 1976, “The Limit of Elastic Deformation in the Contact of Rough Surfaces,” Mech. Res. Commun., Vol.3, pp.169-174.
43.G. C. Maitland, M. Rigby, E. B. Smith and W. A. Wakeham, 1987, Intermolecular Forces, Oxford University Press, London.
44.J. M. Haile, John Wiley & Sons, 1992, Molecular Dynamics Simulation, New York.
45.D. C. Rapaport, 1997, The Art of Molecular Dynamics Simulation, Cambridge University Press, London.
46.D. W. Heermann, 1990, Computer Simulation Method, Springer-Verlag, Berlin.
47.R. Smith, 1997, Atomic & Ion Collisions in Solids and at Surfaces, Cambridge University Press, London.
48.J. Tersoff, 1986, “New Empirical Model for the Structural Properties of Silicon,” Phys. Rev. Lett., Vol.56, pp.632-635.
49.J. Tersoff, 1988, “New Empirical Approach for the Sturcture and Energy of Covalent Systems,” Phys. Rev. B., Vol.37, pp.6991-7000.
50.J. Tersoff, 1989, “Modeling Solid-Stat Chemistry: Interatomic Potentials for Multicomponent System, Phys. Rev. B., Vol.38, pp.5566-5568.
51.J. Tersoff, 1988, “Empirical Interatomic Potential for Silicon with Improved Elastic Properties,” Phys. Rev. B., Vol.38, pp.9902-9905.
52.J. Tersoff, 1988, “Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon,” Phys. Rev. Lett., Vol.61, pp.2879-2882.
53.S. Plimpton, 1995, “Fast Parallel algorithm for short-range molecular dynamics,” Journal of Computational Physics, Vol.117, pp.1-19.
54.V. E. Taylor, R. L. Stevens, and K. E. Arnold, 1994, Proceedings of Fifth Symposium on the Frontiers of Massively Parallel Computation. Vol.156.
55.Maxim Vergeles, Amos Martian, Joel Koplik and Jayanth R. Banavar, 1997, “Adhesion of solids,” Phy. Rev. E, pp.2626-2634.
56.S. Plimpton, 1995, “Computational limits of classical molecular dynamics simulations,” Computational Materials Science, Vol.4, pp.361-364.
57.S. Plimpton, 1995, “Fast parallel algorithm for short-range molecular dynamics,” Journal of Computational Physics, Vol.117, pp.1-19.
58.S. Plimpton, and B. A. Hendrickson, 1993, “Material Theory and Modeling,” MRS proceeding, Vol.291, pp.37-42.
59.C. F. Cornwell, and L.T. Wille, 2000, “Parallel molecular dynamics simulations for short-ranged many-body potential,” Computer Physics Communications,” Vol.128, pp.477-491.
60.Y. Komeiji, M. Haraguchi and U. Nagashima, 2001, “Parallel molecular dynamics simulation of a protein,” Parallel Computing, Vol.27, pp.977-987.
61.楊安正, 2004, “平行處理於分子動力學模擬效率增進之探討,” 國立成功大學, 碩士論文.
62.劉正倫, 2005, “具可變形貌參數之微接觸模型理論研究,” 國立成功大學, 博士論文.