| 研究生: |
李耕琿 Lee, Gang-Hui |
|---|---|
| 論文名稱: |
探討葉酸對於胚胎發育的影響 Exploring the biological significance of folate in embryo development |
| 指導教授: |
傅子芳
Fu, Tzu-Fun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 葉酸缺乏 、肺氣腫 、小眼畸形 、視力喪失 、斑馬魚 |
| 外文關鍵詞: | folate deficiency, emphysema, microphthalmia, vision loss, zebrafish |
| 相關次數: | 點閱:219 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
葉酸是胚胎發育的必需營養素。葉酸補充已知可增進肺部功能及降低神經管缺陷、慢性肺部阻塞、眼球變小的風險。懷孕婦女過量的葉酸補充會增加支氣管炎及氣喘的風險。然而對於葉酸如何參與在這些發育缺陷及疾病的作用機轉尚未完全了解。斑馬魚是一個研究胚胎發育有利的動物模式。在本實驗中我們利用超表現γ-穀氨酸水解酶來製造葉酸缺乏的斑馬魚動物模式。我們發現在葉酸缺乏的斑馬魚胚胎中展現了魚膘無法充氣、眼球變小及視力喪失的徵狀。這些發育的缺陷皆可藉由補充葉酸來恢復。我們的研究結果顯示增加半胱胺酸蛋白酶L/半胱胺酸蛋白酶抑制劑B的比例、影響核甘酸合成及降低維生素A酸的合成可能分別參與在魚膘無法充氣、眼球變小及視力喪失的徵狀中。以上的結果也顯示這個葉酸缺乏的斑馬魚胚胎能發展成肺氣腫及小眼畸形的藥物篩選平台。
Folate, vitamin B9, is an essential nutrient in embryonic development. Folate fortification enhances lung function and decreases the risk of neural tube defect, chronic obstructive pulmonary disease and small eye. Excessive folate supplementation in pregnant women increases the risk of the bronchiolitis and athma. However, the possible mechanisms of how folate participated in these malformations remain unknown. Zebrafish is a powerful animal model for embryogenesis. In this study, zebrafish embryo with folate deficiency is induced by overexpressing γGH protein. We found that folate deficient embryo displayed swimbladder deflation, small eye and vision loss. These phenotypic abnormalities were reversed by folate fortification. Our results suggested that increased ratio of cathepsin L/cystatin B-like, impaired nucleotide synthesis and reduced aldh1a3 expression were likely to be involved in the occurrence of swimbladder deflation, small eye and vision loss, respectively. Our results also suggested that this folate deficient model may serve as a drug-screening platform of emphysema and microphthalmia.
1 Green J, Matthews R: Folate Biosynthesis, Reduction, and Polyglutamylation and the Interconversion of Folate Derivatives. EcoSal Plus 2007;2
2 Tibbetts AS, Appling DR: Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annual review of nutrition 2010;30:57-81.
3 Daly LE, Kirke PN, Molloy A, Weir DG, Scott JM: Folate levels and neural tube defects: implications for prevention. Jama 1995;274:1698-1702.
4 Lindenbaum J, Nath BJ: Megaloblastic anaemia and neutrophil hypersegmentation. British journal of haematology 1980;44:511-513.
5 Hirayama F, Lee AH, Terasawa K, Kagawa Y: Folate intake associated with lung function, breathlessness and the prevalence of chronic obstructive pulmonary disease. Asia Pacific journal of clinical nutrition 2010;19:103-109.
6 Veeranki SP, Gebretsadik T, Dorris SL, Mitchel EF, Hartert TV, Cooper WO, Tylavsky FA, Dupont W, Hartman TJ, Carroll KN: Association of folic acid supplementation during pregnancy and infant bronchiolitis. American journal of epidemiology 2014;179:938-946.
7 İscan B, Tuzun F, Eroglu Filibeli B, Cilekar Micili S, Ergur BU, Duman N, Ozkan H, Kumral A: Effects of maternal folic acid supplementation on airway remodeling and allergic airway disease development. The Journal of Maternal-Fetal & Neonatal Medicine 2018:1-9.
8 Brown GM: The biosynthesis of folic acid. J Biol Chem 1962;237:536-540.
9 Basset GJ, Quinlivan EP, Gregory JF, Hanson AD: Folate synthesis and metabolism in plants and prospects for biofortification. Crop Science 2005;45:449-453.
10 McNulty H, Pentieva K: Folate bioavailability. Proceedings of the Nutrition Society 2004;63:529-536.
11 Gliszczyńska-Świgło A: Folates as antioxidants. Food Chemistry 2007;101:1480-1483.
12 Chang W-N, Lee G-H, Kao T-T, Lin C-Y, Hsiao T-H, Tsai J-N, Chen B-H, Chen Y-H, Wu H-R, Tsai H-J: Knocking down 10-formyltetrahydrofolate dehydrogenase increased oxidative stress and impeded zebrafish embryogenesis by obstructing morphogenetic movement. Biochimica et Biophysica Acta (BBA)-General Subjects 2014;1840:2340-2350.
13 Baggott JE, Tamura T: Folate-dependent purine nucleotide biosynthesis in humans. Advances in Nutrition 2015;6:564-571.
14 Chu J, Qian J, Zhuang Y, Zhang S, Li Y: Progress in the research of S-adenosyl-L-methionine production. Applied microbiology and biotechnology 2013;97:41-49.
15 Huang R-FS, Ho Y-H, Lin H-L, Wei J-S, Liu T-Z: Folate deficiency induces a cell cycle-specific apoptosis in HepG2 cells. The Journal of nutrition 1999;129:25-31.
16 Liang Y, Li Y, Li Z, Liu Z, Zhang Z, Chang S, Wu J: Mechanism of folate deficiency-induced apoptosis in mouse embryonic stem cells: Cell cycle arrest/apoptosis in G1/G0 mediated by microRNA-302a and tumor suppressor gene Lats2. The international journal of biochemistry & cell biology 2012;44:1750-1760.
17 Novakovic P, Stempak JM, Sohn K-J, Kim Y-I: Effects of folate deficiency on gene expression in the apoptosis and cancer pathways in colon cancer cells. Carcinogenesis 2005;27:916-924.
18 Pogribny IP, Miller BJ, James SJ: Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. Cancer letters 1997;115:31-38.
19 Jacob RA, Gretz DM, Taylor PC, James SJ, Pogribny IP, Miller BJ, Henning SM, Swendseid ME: Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. The Journal of nutrition 1998;128:1204-1212.
20 Beaudin AE, Stover PJ: Insights into metabolic mechanisms underlying folate‐responsive neural tube defects: a minireview. Birth Defects Research Part A: Clinical and Molecular Teratology 2009;85:274-284.
21 Oyama K, Sugimura Y, Murase T, Uchida A, Hayasaka S, Oiso Y, Murata Y: Folic acid prevents congenital malformations in the offspring of diabetic mice. Endocrine journal 2009;56:29-37.
22 Miller AL: The methylation, neurotransmitter, and antioxidant connections between folate and depression. Alternative Medicine Review 2008;13
23 Das UN: Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer's disease—but how and why? Prostaglandins, Leukotrienes and Essential Fatty Acids 2008;78:11-19.
24 Macreadie I, Lotfi-Miri M, Mohotti S, Shapira D, Bennett L, Varghese J: Validation of folate in a convenient yeast assay suited for identification of inhibitors of Alzheimer's amyloid-β aggregation. Journal of Alzheimer's Disease 2008;15:391-396.
25 Verhaar M, Stroes E, Rabelink T: Folates and cardiovascular disease. Arteriosclerosis, thrombosis, and vascular biology 2002;22:6-13.
26 Duthie SJ: Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. Journal of inherited metabolic disease 2011;34:101-109.
27 Sauer J, Mason JB, Choi S-W: Too much folate–a risk factor for cancer and cardiovascular disease? Current opinion in clinical nutrition and metabolic care 2009;12:30.
28 Tu H-C, Lee G-H, Hsiao T-H, Kao T-T, Wang T-Y, Tsai J-N, Fu T-F: One crisis, diverse impacts—Tissue-specificity of folate deficiency-induced circulation defects in zebrafish larvae. PloS one 2017;12:e0188585.
29 Kao T-T, Chu C-Y, Lee G-H, Hsiao T-H, Cheng N-W, Chang N-S, Chen B-H, Fu T-F: Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish—Implication in neural tube defects and Alzheimer's diseases. Neurobiology of disease 2014;71:234-244.
30 Weber KA, Yang W, Carmichael SL, Shaw GM, Study NBDP: Nutrient intake in women before conception and risks of anophthalmia and microphthalmia in their offspring. Birth defects research 2018;110:863-870.
31 Maestro‐de‐las‐Casas C, Pérez‐Miguelsanz J, López‐Gordillo Y, Maldonado E, Partearroyo T, Varela‐Moreiras G, Martínez‐Álvarez C: Maternal folic acid–deficient diet causes congenital malformations in the mouse eye. Birth Defects Research Part A: Clinical and Molecular Teratology 2013;97:587-596.
32 Nelson MM, Asling CW, Evans HM: Production of Multiple Congenital Abnormalities in Young by Maternal Pteroylglutamic Acid Deficiency during Gestation1: Thirteen Figures. The Journal of nutrition 1952;48:61-79.
33 Harris MJ: Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants. Birth Defects Research Part A: Clinical and Molecular Teratology 2009;85:331-339.
34 MacFarlane AJ, Liu X, Perry CA, Flodby P, Allen RH, Stabler SP, Stover PJ: Cytoplasmic serine hydroxymethyltransferase regulates the metabolic partitioning of methylenetetrahydrofolate but is not essential in mice. Journal of Biological Chemistry 2008;283:25846-25853.
35 Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS: Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Human molecular genetics 2001;10:433-444.
36 Kari G, Rodeck U, Dicker A: Zebrafish: an emerging model system for human disease and drug discovery. Clinical Pharmacology & Therapeutics 2007;82:70-80.
37 Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G: Zebrafish: a complete animal model for in vivo drug discovery and development. Current drug metabolism 2009;10:116-124.
38 Lee MS, Bonner JR, Bernard DJ, Sanchez EL, Sause ET, Prentice RR, Burgess SM, Brody LC: Disruption of the folate pathway in zebrafish causes developmental defects. BMC Developmental biology 2012;12:12.
39 Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM: Live imaging of lymphatic development in the zebrafish. Nature medicine 2006;12:711.
40 Melani C, Campana M, Lombardot B, Rizzi B, Veronesi F, Zanella C, Bourgine P, Mikula K, Peyriéras N, Sarti A: Cells tracking in a live zebrafish embryo: Engineering in Medicine and Biology Society, 2007 EMBS 2007 29th Annual International Conference of the IEEE, IEEE, 2007, pp 1631-1634.
41 Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL: The syntenic relationship of the zebrafish and human genomes. Genome research 2000;10:1351-1358.
42 Lieschke GJ, Currie PD: Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics 2007;8:353.
43 Robertson GN, Lindsey BW, Dumbarton TC, Croll RP, Smith FM: The contribution of the swimbladder to buoyancy in the adult zebrafish (Danio rerio): a morphometric analysis. Journal of Morphology 2008;269:666-673.
44 Zheng W, Wang Z, Collins JE, Andrews RM, Stemple D, Gong Z: Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung. PloS one 2011;6:e24019.
45 Winata CL, Korzh S, Kondrychyn I, Zheng W, Korzh V, Gong Z: Development of zebrafish swimbladder: The requirement of Hedgehog signaling in specification and organization of the three tissue layers. Developmental biology 2009;331:222-236.
46 Field HA, Dong PS, Beis D, Stainier DY: Formation of the digestive system in zebrafish. ii. pancreas morphogenesis☆. Developmental biology 2003;261:197-208.
47 Richardson R, Tracey-White D, Webster A, Moosajee M: The zebrafish eye—a paradigm for investigating human ocular genetics. Eye 2017;31:68.
48 Glass AS, Dahm R: The zebrafish as a model organism for eye development. Ophthalmic research 2004;36:4-24.
49 Renninger SL, Schonthaler HB, Neuhauss SC, Dahm R: Investigating the genetics of visual processing, function and behaviour in zebrafish. Neurogenetics 2011;12:97-116.
50 Toulis V, Garanto A, Marfany G: Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating Enzyme (Dubs) Genes in Development: Role of USP45 in the Retina; Proteostasis, Springer, 2016, pp 85-101.
51 Antinucci P, Hindges R: A crystal-clear zebrafish for in vivo imaging. Scientific reports 2016;6:29490.
52 Kao T-T, Wang K-C, Chang W-N, Lin C-Y, Chen B-H, Wu H-L, Shi G-Y, Tsai J-N, Fu T-F: Characterization and comparative studies of zebrafish and human recombinant dihydrofolate reductases---Inhibition by folic acid and polyphenols. Drug Metabolism and Disposition 2007
53 Chang W-N, Tsai J-N, Chen B-H, Fu T-F: Cloning, expression, purification, and characterization of zebrafish cytosolic serine hydroxymethyltransferase. Protein expression and purification 2006;46:212-220.
54 Chang W-N, Lin H-C, Fu T-F: Zebrafish 10-formyltetrahydrofolate dehydrogenase is similar to its mammalian isozymes for its structural and catalytic properties. Protein expression and purification 2010;72:217-222.
55 Kao T-T, Chang W-N, Wu H-L, Shi G-Y, Fu T-F: Recombinant zebrafish γ-glutamyl hydrolase exhibits comparable properties and catalytic activities to mammalian enzyme. Drug Metabolism and Disposition 2008
56 Stachura DL, Svoboda O, Lau RP, Balla KM, Zon LI, Bartunek P, Traver D: Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 2011;118:1274-1282.
57 Westerfield M: The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish Danio (" Brachydanio Rerio"). University of Oregon, 2007.
58 Avwioro G: Histochemical uses of haematoxylin—a review. Jpcs 2011;1:24-34.
59 Sheehan D, Hrapchak B: Connective tissue and muscle fiber stains. Theory and practice of histotechnology 1980;2
60 Jowett T: Double in situ hybridization techniques in zebrafish. Methods 2001;23:345-358.
61 Thisse C, Thisse B, Schilling T, Postlethwait J: Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 1993;119:1203-1215.
62 Le Guyader D, Redd MJ, Colucci-Guyon E, Murayama E, Kissa K, Briolat V, Mordelet E, Zapata A, Shinomiya H, Herbomel P: Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 2008;111:132-141.
63 Schlegel A, Stainier DY: Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry 2006;45:15179-15187.
64 Macdonald R: Zebrafish immunohistochemistry; Molecular Methods in Developmental Biology, Springer, 1999, pp 77-88.
65 Peterson SM, Freeman JL: RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. Journal of visualized experiments: JoVE 2009
66 Kao T-T, Chang W-N, Wu H-L, Shi G-Y, Fu T-F: Recombinant zebrafish γ-glutamyl hydrolase exhibits properties and catalytic activities comparable with those of mammalian enzyme. Drug Metabolism and Disposition 2009;37:302-309.
67 Peyronel DV, Cantera AMB: A simple and rapid technique for postelectrophoretic detection of proteases using azocasein. Electrophoresis 1995;16:1894-1897.
68 Maaswinkel H, Li L: Spatio-temporal frequency characteristics of the optomotor response in zebrafish. Vision research 2003;43:21-30.
69 Li L, Jin H, Xu J, Shi Y, Wen Z: Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 2010:blood-2010-2006-290700.
70 Perrin S, Rich CB, Morris SM, Stone PJ, Foster JA: The zebrafish swimbladder: a simple model for lung elastin injury and repair. Connective tissue research 1999;40:105-112.
71 Arai S, Watanabe H, Kondo H, Emori Y, Abe K: Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gln-Val-Val-Ala-Gly region conserved among cystatin superfamily members. The Journal of Biochemistry 1991;109:294-298.
72 Christensen KE, MacKenzie RE: Mitochondrial one‐carbon metabolism is adapted to the specific needs of yeast, plants and mammals. Bioessays 2006;28:595-605.
73 Dickman ED, Thaller C, Smith SM: Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 1997;124:3111-3121.
74 Duester G: Retinoic acid synthesis and signaling during early organogenesis. Cell 2008;134:921-931.
75 Pittlik S, Domingues S, Meyer A, Begemann G: Expression of zebrafish aldh1a3 (raldh3) and absence of aldh1a1 in teleosts. Gene Expression Patterns 2008;8:141-147.
76 Hammond EC: Smoking in relation to the death rates of one million men and women. 1966
77 Lave LB, Seskin E: Air pollution and human health. Readings in Biology and Man 1973;169:294.
78 Hogg J, Senior R: Chronic obstructive pulmonary disease c 2: Pathology and biochemistry of emphysema. Thorax 2002;57:830-834.
79 Association AL: Trends in COPD (chronic bronchitis and emphysema). Morbidity and mortality 2013;2
80 Stolk J, Rudolphus A, Davies P, Osinga D, Dijkman JH, Agarwal L, Keenan KP, Fletcher D, Kramps JA: Induction of emphysema and bronchial mucus cell hyperplasia by intratracheal instillation of lipopolysaccharide in the hamster. The Journal of pathology 1992;167:349-356.
81 Rodrigues R, Olivo CR, Lourenço JD, Riane A, Cervilha DAdB, Ito JT, Martins MdA, Lopes FDTQd: A murine model of elastase-and cigarette smoke-induced emphysema. Jornal Brasileiro de Pneumologia 2017;43:95-100.
82 Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D: Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2012;1824:68-88.
83 Niewoehner DE, Kleinerman J, Rice DB: Pathologic changes in the peripheral airways of young cigarette smokers. New England Journal of Medicine 1974;291:755-758.
84 Palmgren MS, Carter RM, Zimny ML, Shah SV: Mechanisms of neutrophil damage to human alveolar extracellular matrix: the role of serine and metalloproteases. Journal of allergy and clinical immunology 1992;89:905-915.
85 Finlay GA, O'driscoll LR, Russell KJ, D'arcy EM, Masterson JB, Fitzgerald MX, O'connor CM: Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. American journal of respiratory and critical care medicine 1997;156:240-247.
86 Wynn TA, Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016;44:450-462.
87 Murray LA, Chen Q, Kramer MS, Hesson DP, Argentieri RL, Peng X, Gulati M, Homer RJ, Russell T, van Rooijen N: TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. The international journal of biochemistry & cell biology 2011;43:154-162.
88 Kaviratne M, Hesse M, Leusink M, Cheever AW, Davies SJ, McKerrow JH, Wakefield LM, Letterio JJ, Wynn TA: IL-13 activates a mechanism of tissue fibrosis that is completely TGF-β independent. The Journal of Immunology 2004;173:4020-4029.
89 Waterland RA, Jirtle RL: Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Molecular and cellular biology 2003;23:5293-5300.
90 Han H, Cortez CC, Yang X, Nichols PW, Jones PA, Liang G: DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Human molecular genetics 2011;20:4299-4310.
91 Muralidharan P, Sarmah S, Marrs JA: Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol 2015;49:149-163.
92 Bohnsack BL, Kasprick DS, Kish PE, Goldman D, Kahana A: A zebrafish model of axenfeld-rieger syndrome reveals that pitx2 regulation by retinoic acid is essential for ocular and craniofacial development. Investigative ophthalmology & visual science 2012;53:7-22.
校內:2023-09-01公開