簡易檢索 / 詳目顯示

研究生: 黃千真
Huang, Chein-Chen
論文名稱: 以Midazolam在老鼠之代謝酵素動力學探討Ursodeoxycholic Acid對細胞色素3A藥物代謝之影響
Effect of Ursodeoxycholic acid (UDCA) on CYP3A Drug Metabolism: Study with Midazolam in Rats
指導教授: 周辰熹
Chou, Chen-Hsi
鄭靜玲
Cheng, Ching-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 119
中文關鍵詞: 細胞色素3A老鼠
外文關鍵詞: CYP3A, midazolam, rat, UDCA
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    膽酸是人體內一種內生性的物質,其主要功能是幫助肝臟的膽固醇由膽道排除和幫助小腸脂質的乳化和吸收。目前臨床使用的膽酸有ursodeoxycholic acid (UDCA) 和chenodeoxycholic acid (CDCA),長期口服大劑量的膽酸被使用於治療膽結石。UDCA是經由腸道細菌和肝臟的修飾生成,屬於三級膽酸 (tertiary bile acid),其結構中含有雙羥基,與人體內含量最多的膽酸chenodeoxycholic acid (CDCA) 兩者互為立體異構物。文獻指出依膽酸脂溶性的大小對細胞色素3A (CYP3A) 有不同的影響效果。最近研究發現,在小鼠腹腔注射UDCA後,其肝臟的CYP3A之mRNA及蛋白質的含量皆有顯著的增加;而此結果和細胞色素的活性亦有好的相關性,表示膽鹽會誘導CYP3A。所以UDCA可能會影響由CYP3A代謝藥品的體內動態及其臨床療效,而顯示其重要性。
    本研究主要目的在探討UDCA對大鼠肝臟CYP3A含量及活性之影響。藉由midazolam在體外肝臟微粒體酵素培養試驗之代謝動力學來觀察UDCA經投與不同天數對CYP3A活性之影響,另外建立專一性高的西方點墨法來測定(Western blotting)CYP3A含量變化。
    研究結果中利用高效液相層析開發的藥品分析方法可將原藥midazolam、代謝藥物1-hydroxymidazolam和4-hydroxymidazolam達到良好的分離,並且可用於肝臟微粒體體外培養試驗之藥品的定量分析。使用已知CYP3A的誘導劑dexamethasone 和抑制劑 delavridine 在體外培養試驗方法和西方點墨法中,可得顯著增加或降低CYP3A活性及含量之預期效果,進一步的確認方法的可信度。而體外培養試驗方法中delavirdine其抑制作用和時間的關係,說明了生物體內對毒物排除有一套自我保護的功能。研究藥品UDCA經投與不同天數後觀察CYP 3A2含量隨著投與的時間增加似乎有些微的增加,尤其以第二批(920527)最為明顯。使用定量儀器將訊號量化發現可能是因蛋白質加入量太少或是超出定量儀器之定量範圍無法得到數值有顯著差異。使用體外培養試驗方法觀察其活性亦是有增加趨勢,經統計分析後並無明顯差異,但由實驗得知CYP3A2含量、活性皆表示了UDCA有誘導CYP3A之趨勢。
    CYP3A於個體之間的差異相當大且使用鼠的種類和文獻上不同,可能造成在本研究中UDCA對CYP3A蛋白質表現量及活性雖無顯著意義,但蛋白質含量、活性方面是有增加之情形。可藉由擴大研究數目來觀察UDCA誘導CYP3A活性及含量的變化情形。

    Abstract
    Introduction. Bile acids are synthesized from cholesterol in the liver, and secreted with bile into intestine. Assisting cholesterol excretion in the bile and helping lipid absorption are the important endogenous functions of bile acids. Clinically ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) are used for the dissolution of gallstone. Noticeably, UDCA is more often used than CDCA because UDCA has fewer side effects. A recent study indicated that UDCA could induce hepatic CYP3A activity and content in mice. This observation leads to the speculation that plasma levels of drugs metabolized by CYP3A may be reduced when coadministrated with UDCA.
    Aim. The purpose of this study is to investigate the effects of UDCA administration on CYP3A expression and activity in rats.
    Methods A validated HPLC method was developed for the quantification of midazolam (MDZ); a CYP 3A probe compound, and it’s metabolites 1-hydroxymidazolam (1-OH MDZ) and 4-hydroxy- midazolam (4-OH MDZ) in biological matrix. Metabolic kinetics of midazolam (MDZ) was undertaken in rat liver microsomes to determine the in vitro CYP3A activity. Western blotting analysis using rabbit monoclonal antibody (anti-rat CYP3A2) was performed to determine the CYP3A2 content of rat liver microsomes.
    Results. The well-know CYP3A inducer Dexamethasone significantly increased expression and activity of CYP3A activity, while the mechanism-based inhibitor delavirdine significantly decresesd CYP3A expression and in vitro activity. Interestingly, the inhibition effect of delavirdine one-hour treatment group was stronger than the one-day treatment group in in vitro study. The signals of CYP3A2 bands following intraperitonal administration of UDCA quantified were higher than the control group, with mean ratio of 1.06, 1.16, 1.11, 1.23 and 1.16 for 1-, 3-, 5-, 7-, and 14-day treatment group respectively. Similarly, the in vitro CYP3A activities, in terms of intrinsic clearances of 1-OH MDZ and 4-OH MDZ, were greater in the UDCA treatment groups than that of the control group. However, the induction effect of UDCA did not reach Conclusion. In summary, administration of UDCA appears to increase the expression and activity of CYP 3A in rats. This induction effect on CYP3A deserves further investigation.

    目錄 摘要…………………………………………………………………….…i Abstract………………………………………………………………….iii 致謝………………………………………………………………………v 目錄………………………………………………………………...……vi 表目錄……………………………………………………………….......x 圖目錄…………………………………………………………………...xi 第壹章 續論……………………………………………………………..1 第一節 前言…………………………………………….…………..1 第二節 膽酸……………………….………………………………..2 一、結構及命名………………………….……………………..2 二、物化特性..………………………………………………….3 三、生合成及動態…………………………..………………….4 四、生理角色……………………………..………………….…7 五、臨床上治療使用的膽酸: UDCA (ursodeoxycholic acid)……………….…..…….7 六、文獻回顧……………….………………………………….9 第三節 細胞色素P450…………………….……………………..11 一、分布……………………………………….………………11 二、命名…………………………………….……………….…12 三、細胞色素P450的重要性………………………………..12 四、細胞色素P450 3A的誘導機轉…………………..……...14 五、細胞色素P450 3A的抑制機轉..…………………...……14 第四節 Midazolam簡介………………………….………………17 一、物理化學性質…………………………………………….17 二、藥動特性…………………….……………………….…..17 三、分析方法之文獻回顧……………………………….……18 四、選用的原因……………………………………………….19 第貳章 研究目的………………………………………………………30 第參章 實驗材料、儀器及方法………………………………………32 第一節 實驗材料…………………………….……………………32 一、實驗動物…………………………………………………..32 二、藥品與試劑………………………………………………..32 第二節 實驗儀器……………………….…………………………32 一、高效液相層析系統………………………………………32 二、灌流手術…………………………………………………..33 三、微粒體的製備系統………………………………….……33 四、微粒體體外代謝系統…………………………………….34 五、西方點墨法………………………………………………34 六、繪圖及藥動分析軟體…………………………………….35 第三節 實驗方法………………………………………………………36 一、藥品定量分析…………………...……………………….36 二、肝臟微粒體的製備…………...………………………….37 三、肝臟微粒體之蛋白質測定:Lowry method…………….39 四、體外肝臟微粒體的培養試驗…….………………………40 五、Western blotting 分析方法……………………………..42 六、UDCA投與時間對肝臟微粒體之影響………………....49 七、數據解析…………………………………….……………50 第肆章 實驗結果………………………………………………………55 第一節 藥品定量分析…………………………………….………55 一、HPLC層析圖譜……………..…………………………..55 二、校正曲線…………………………………………………55 第二節 肝臟微粒體的製備………………..……………………..56 第三節 肝臟微粒體之蛋白質測定:Lowry method…………...56 一、校正曲線………………………………………………….56 二、肝臟微粒體之蛋白質安定性試驗……………………….57 第四節 體外肝臟微粒體的培養試驗………………….…………57 一、體外肝臟微粒體的培養時間點..………………………..57 二、不同藥品對肝臟微粒體之影響….……………………...58 第五節 西方點墨法CYP 3A2偵測……………….……………..59 第伍章 討論……………………………………………………………93 第一節 藥品及代謝物之分析…………………………….………93 第二節 實驗動物處理情形….………………………….………..93 第三節 肝臟微粒體之蛋白質定量………………………….…...94 第四節 體外肝臟微粒體的培養試驗………………………….…94 一、培養試驗之時間點…………………………………….…94 二、培養試驗酵素動力學參數探討……………………….…95 三、UDCA對CYP3A影響之探討…………………..……...97 第陸章 結論………………………………………………………….105 參考文獻……………………………………………………………...107

    Reference:
    Adams, H. A., Weber, B., Bachmann, M. B., Guerin, M., and Hempelmann, G.: The simultaneous determination of ketamine and midazolam using high pressure liquid chromatography and UV detection (HPLC/UV). Anaesthesist 41 (10): 619-24., 1992.
    Allison, R. D., and Purich, D. L.: Practical considerations in the design of initial velocity enzyme rate assays. Methods Enzymol 63: 3-22, 1979.
    Araya, Z., and Wikvall, K.: 6alpha-hydroxylation of taurochenodeoxycholic acid and lithocholic acid by CYP3A4 in human liver microsomes. Biochim Biophys Acta 1438 (1): 47-54, 1999.
    Bourget, P., Bouton, V., Lesne-Hulin, A., Amstutz, P., Benayed, M., Benhamou, D., Dufieux, P. L., Goursot, G., Grosbuis, S., Haberer, J. P., Jardin, F., Kirstetter, P., Marty, J., Mercatello, A., Page, B., Pourriat, J. L., and Vassal, T.: Comparison of high-performance liquid chromatography and polyclonal fluorescence polarization immunoassay for the monitoring of midazolam in the plasma of intensive care unit patients. Ther Drug Monit 18 (5): 610-9., 1996.
    Braunwald, E., Fauci, A. S., Isselbacher, K. J., Martin, J. B., Petersdorf, R. G., and Wilson, J. D.: Disorder of the gastrointestinal system. In Harrison's Principles of Internal Medicine, ed. by E. Braunwald, A. S. Fauci, D. L. Kasper, S. L. Hauser, D. L. Longo, and J. L. Jameson, 15th,vol. 2, pp. 1667-9, Mc. Graw-Hill, New York, 2001a.
    Braunwald, E., Fauci, A. S., Isselbacher, K. J., Martin, J. B., Petersdorf, R. G., and Wilson, J. D.: Disorder of the gastrointestinenal system. In Harrison's Principles of Internal Medicine, ed. by E. Braunwald, A. S. Fauci, D. L. Kasper, S. L. Hauser, D. L. Longo, and J. L. Jameson, 13th,vol. 2, pp. 1505-9, Mc. Graw-Hill, New York, 2001b.

    Carrillo, J. A., Ramos, S. I., Agundez, J. A., Martinez, C., and Benitez, J.: Analysis of midazolam and metabolites in plasma by high-performance liquid chromatography: probe of CYP3A. Ther Drug Monit 20 (3): 319-24., 1998.
    Chan, K., and Jones, R. D.: Simultaneous determination of flumazenil, midazolam and metabolites in human biological fluids by liquid chromatography. J Chromatogr 619 (1): 154-60., 1993.
    Chen, J., and Farrell, G. C.: Bile acids produce a generalized reduction of the catalytic activity of cytochromes P450 and other hepatic microsomal enzymes in vitro: relevance to drug metabolism in experimental cholestasis. J Gastroenterol Hepatol 11 (9): 870-7, 1996.
    Chen, J., Murray, M., Liddle, C., Jiang, X. M., and Farrell, G. C.: Downregulation of male-specific cytochrome P450s 2C11 and 3A2 in bile duct-ligated male rats: importance to reduced hepatic content of cytochrome P450 in cholestasis. Hepatology 22 (2): 580-7, 1995.
    Chianale, J., Vollrath, V., Wielandt, A. M., Amigo, L., Rigotti, A., Nervi, F., Gonzalez, S., Andrade, L., Pizarro, M., and Accatino, L.: Fibrates induce mdr2 gene expression and biliary phospholipid secretion in the mouse. Biochem J 314 ( Pt 3): 781-6, 1996.
    Cholerton, S., Daly, A. K., and Idle, J. R.: The role of individual human cytochromes P450 in drug metabolism and clinical response. Trends Pharmacol Sci 13 (12): 434-9, 1992.
    Costa, A. M. A., Tuchweber, B., Lamireau, T., Yousef, I. M., Balabaud, C., Rosenbaum, J., and Desmouliere, A.: Role of apoptosis in the remodeling of cholestatic liver injury following release of the mechanism stress. Virchows Arch. 442: 372-380, 2003.
    Cotreau, M. M., von Moltke, L. L., Beinfeld, M. C., and Greenblatt, D. J.: Methodologies to study the induction of rat hepatic and intestinal cytochrome P450 3A at the mRNA, protein, and catalytic activity level. J Pharmacol Toxicol Methods 43 (1): 41-54, 2000.
    Domanski, T. L., Finta, C., Halpert, J. R., and Zaphiropoulos, P. G.: cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 59 (2): 386-92, 2001.
    Durr, D., Stieger, B., Kullak-Ublick, G. A., Rentsch, K. M., Steinert, H. C., Meier, P. J., and Fattinger, K.: St John's Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 68 (6): 598-604, 2000.
    Eeckhoudt, S. L., Desager, J. P., Horsmans, Y., De Winne, A. J., and Verbeeck, R. K.: Sensitive assay for midazolam and its metabolite 1'-hydroxymidazolam in human plasma by capillary high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 710 (1-2): 165-71., 1998.
    Eeckhoudt, S. L., Horsmans, Y., and Verbeeck, R. K.: Differential induction of midazolam metabolism in the small intestine and liver by oral and intravenous dexamethasone pretreatment in rat. Xenobiotica 33 (11): 975-85, 2002.
    Fickert, P., Zollner, G., Fuchsbichler, A., Stumptner, C., Pojer, C., Zenz, R., Lammert, F., Stieger, B., Meier, P. J., Zatloukal, K., Denk, H., and Trauner, M.: Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology 121 (1): 170-83, 2001.
    Fuchs, M., and Stange, E. F.: Function of the liver: metabolism of bile acid. In Oxford Textbook of Clinical Hepatology, ed. by J. Bricher, J.-P. Benhamon, N. Mclntyre, and J. Rodes, 2nd, vol. 1, pp. 223-24, Oxford Medical, Oxford, 1999.
    Fuhr, U.: Induction of drug metabolising enzymes: pharmacokinetic and toxicological consequences in humans. Clin Pharmacokinet 38 (6): 493-504, 2000.
    Gellner, K., Eiselt, R., Hustert, E., Arnold, H., Koch, I., Haberl, M., Deglmann, C. J., Burk, O., Buntefuss, D., Escher, S., Bishop, C., Koebe, H. G., Brinkmann, U., Klenk, H. P., Kleine, K., Meyer, U. A., and Wojnowski, L.: Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 11 (2): 111-21, 2001.
    Ghosal, A., Satoh, H., Thomas, P. E., Bush, E., and Moore, D.: Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450. Drug Metab Dispos 24 (9): 940-7., 1996.
    Goroves, J. T., and Han, Y.-Z.: Models and mechasims of cytochrome P450 action. In cytochrome P450: structue, mechanism, and biochemistry, ed. by P. R. O. de Montellano, pp. 3-5, 1995.
    Ha, H. R., Rentsch, K. M., Kneer, J., and Vonderschmitt, D. J.: Determination of midazolam and its alpha-hydroxy metabolite in human plasma and urine by high-performance liquid chromatography. Ther Drug Monit 15 (4): 338-43., 1993.
    Handschin, C., Podvinec, M., Amherd, R., Looser, R., Ourlin, J. C., and Meyer, U. A.: Cholesterol and bile acids regulate xenosensor signaling in drug-mediated induction of cytochromes P450. J Biol Chem 277 (33): 29561-7., 2002.
    Higashikawa, F., Murakami, T., Kaneda, T., and Takano, M.: In-vivo and in-vitro metabolic clearance of midazolam, a cytochrome P450 3A substrate, by the liver under normal and increased enzyme activity in rats. J Pharm Pharmacol 51 (4): 405-10, 1999.
    Honkakoski, P., and Negishi, M.: Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 347 (Pt 2): 321-37, 2000.

    Huang, L., Wring, S. A., Woolley, J. L., Brouwer, K. R., Serabjit-Singh, C., and Polli, J. W.: Induction of P-glycoprotein and cytochrome P450 3A by HIV protease inhibitors. Drug Metab Dispos 29 (5): 754-60, 2001.
    Huss, J. M., Wang, S. I., and Kasper, C. B.: Differential glucocorticoid responses of CYP3A23 and CYP3A2 are mediated by selective binding of orphan nuclear receptors. Arch Biochem Biophys 372 (2): 321-32, 1999.
    Hutterer, F., Bacchin, P. G., Denk, H., Schenkman, J. B., Schaffner, F., and Popper, H.: Mechanism of cholestasis. 2. Effect of bile acids on the microsomal electron transfer system in vitro. Life Sci II 9 (20): 1159-66, 1970.
    Jiang, Q., Walton, N. Y., Gunawan, S., and Treiman, D. M.: High-performance liquid chromatographic determination of midazolam in rat brain. J Chromatogr B Biomed Appl 683 (2): 276-80., 1996.
    Kasbo, J., Saleem, M., Perwaiz, S., Mignault, D., Lamireau, T., Tuchweber, B., and Yousef, I.: Biliary, Fecal and plasma deoxycholic aicd in rabbits, hamster, guinea pig, and rat: comparative study and implication in colon cancer. Biol. Pharm. Bull 25 (10): 1381-4, 2002.
    Kato, R., and Yamazoe, Y.: Sex-specific cytochrome P450 as a cause of sex- and species-related differences in drug toxicity. Toxicol Lett 64-65 Spec No: 661-7, 1992.
    Kenworthy, K. E., Bloomer, J. C., Clarke, S. E., and Houston, J. B.: CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 48 (5): 716-27, 1999.
    Kitani, K., Kanai, S., and Ohta, M.: The preventive effects of glycine conjugates of ursodeoxycholate, beta-muricholate on taurochenodeoxycholate induced cholestasis in the rat. Acta Hepatol Jpn 34 (suppl): 247, 1993.

    Kitani, K., Kanai, S., Ohta, M., and Tsukahara, K.: Ursodeoxycholate (UDC) prevents the hepatocellular damage caused by other bile salts as its conjugates in rats. Hepatology 8: 1456-1460, 1988.
    Kitani, K., Kanai, S., Sato, Y., and Ohta, M.: Tauro alpha-muricholate is as effective as tauro beta-muricholate and tauroursodeoxycholate in preventing taurochenodeoxycholate-induced liver damage in the rat. Hepatology 19 (4): 1007-12, 1994.
    Kitani, K., Ohta, M., and Kanai, S.: Tauroursodeoxycholate prevents biliary protein excretion induced by other bile salts in the rat. Am J Physiol 248 (4 Pt 1): G407-17, 1985.
    Kliewer, S. A., Moore, J. T., Wade, L., Staudinger, J. L., Watson, M. A., Jones, S. A., McKee, D. D., Oliver, B. B., Willson, T. M., Zetterstrom, R. H., Perlmann, T., and Lehmann, J. M.: An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92 (1): 73-82, 1998.
    Kocarek, T. A., Schuetz, E. G., Strom, S. C., Fisher, R. A., and Guzelian, P. S.: Comparative analysis of cytochrome P4503A induction in primary cultures of rat, rabbit, and human hepatocytes. Drug Metab Dispos 23 (3): 415-21, 1995.
    Komori, M., and Oda, Y.: A major glucocorticoid-inducible P450 in rat liver is not P450 3A1. J Biochem (Tokyo) 116 (1): 114-20, 1994.
    Koolman, J., and Rohm, K.-H.: Tissues and organs. In Color Atlas of Biochemistry, pp. 288-9, Thieme, Stuttgart, Germany, 1999.
    Kowdley, K. V.: Ursodeoxycholic acid therapy in hepatobiliary disease. Am J Med 108: 481-486, 2000.
    Kumar, D., and Tandon, R. K.: Use of ursodeoxycholic acid in liver diseases. J Gastroenterol Hepatol 16 (1): 3-14, 2001.

    Lai, S. W., and Ng, K. C.: Risk factors for gallstone disease in a hospital-based study. South Med J 95 (12): 1419-23, 2002.
    Lamireau, T., Zoltowska, M., Levy, E., Yousef, I., Rosenbaum, J., Tuchweber, B., and Desmouliere, A.: Effects of bile acids on biliary epithelial cells: Proliferation, cytotoxicity, and cytokine secretion. Life Sci. 72 (12): 1401-11, 2003.
    Lan, L. B., Dalton, J. T., and Schuetz, E. G.: Mdr1 limits CYP3A metabolism in vivo. Mol Pharmacol 58 (4): 863-9, 2000.
    Lehmann, J. M., McKee, D. D., Watson, M. A., Willson, T. M., Moore, J. T., and Kliewer, S. A.: The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102 (5): 1016-23, 1998.
    Lin, J. H., Chiba, M., Chen, I.-W., Nishime, J. A., Deluna, F. A., Yamazaki, M., and Lin, Y. J.: Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 A and P-glycoprotein induction. Drug Metab Dispos 27 (10): 1187-93, 1999.
    Lin, J. H., and Lu, A. Y.: Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 35 (5): 361-90, 1998.
    Lindstrom, T. D., Hanssen, B. R., and Wrighton, S. A.: Cytochrome P-450 complex formation by dirithromycin and other macrolides in rat and human livers. Antimicrob Agents Chemother 37 (2): 265-9, 1993.
    Lown, K. S., Thummel, K. E., Benedict, P. E., Shen, D. D., Turgeon, D. K., Berent, S., and Watkins, P. B.: The erythromycin breath test predicts the clearance of midazolam. Clin Pharmacol Ther 57 (1): 16-24, 1995.
    Lu, S. N., Chang, W. Y., Wang, L. Y., Hsieh, M. Y., Chuang, W. L., Chen, S. C., Su, W. P., Tai, T. Y., Wu, M. M., and Chen, C. J.: Risk factors for gallstones among Chinese in Taiwan. A community sonographic survey. J Clin Gastroenterol 12 (5): 542-6, 1990.
    Ma, F., and Lau, C. E.: Determination of midazolam and its metabolites in serum microsamples by high-performance liquid chromatography and its application to pharmacokinetics in rats. J Chromatogr B Biomed Appl 682 (1): 109-13., 1996.
    Mackinnon, A. M., and Simon, F. R.: Reduced synthesis of hepatic microsomal cytochroma P450 in the bile duct ligated rat. Biochem Biophys Res Commun 56 (2): 437-43, 1974.
    Makino, I., Shinozaki, K., Yoshino, K., and Nakagawa, S.: Dissolution of cholesterol gallstones by long-term administration of ursodeoxycholic acid. Nippon Shokakibyo Gakkai Zasshi 72 (6): 690-702, 1975.
    Mandema, J., Tukker, E., and Danhof, M.: Pharmacokinetic- pharmacodynamic modelling of the EEG effects of midazolam in individual rats: influence of rate and route of administration. Br J Pharmacol. 102 (3): 663-8, 1991.
    Mastey, V., Panneton, A. C., Donati, F., and Varin, F.: Determination of midazolam and two of its metabolites in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Appl 655 (2): 305-10., 1994.
    Meier, P. J.: Biliary excretion of drugs and other chemicals. In biliary excretion of endogenous and exogenous compounds, ed. by C.-P. Siegers and J. B. Watkins III, vol. 8, pp. 161, Gustav Fischer Verlag, Stuttgart, 1991.
    Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., Waxman, D. J., Waterman, M. R., Gotoh, O., Coon, M. J., Estabrook, R. W., Gunsalus, I. C., and Nebert, D. W.: P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6 (1): 1-42, 1996.

    Ohmori, S., Ishii, I., Kuriya, S., Taniguchi, T., Rikihisa, T., Hirose, S., Kanakubo, Y., and Kitada, M.: Effects of clarithromycin and its metabolites on the mixed function oxidase system in hepatic microsomes of rats. Drug Metab Dispos 21 (2): 358-63, 1993.
    Olivier, J. C., Djilani, M., Fahmy, S., and Couet, W.: In situ nasal absorption of midazolam in rats. Int J Pharm 213 (1-2): 187-92., 2001.
    Paolini, M., Pozzetti, L., Montagnani, M., Potenza, G., Sabatini, L., Antelli, A., Cantelli-Forti, G., and Roda, A.: Ursodeoxycholic acid (UDCA) prevents DCA effects on male mouse liver via up-regulation of CYP [correction of CXP] and preservation of BSEP activities. Hepatology 36 (2): 305-14, 2002.
    Paolini, M., Pozzetti, L., Piazza, F., Cantelli-Forti, G., and Roda, A.: Bile acid structure and selective modulation of murine hepatic cytochrome P450-linked enzymes. Hepatology 30 (3): 730-9, 1999.
    Paolini, M., Pozzetti, L., Piazza, F., Guerra, M. C., Speroni, E., Cantelli-Forti, G., and Roda, A.: Mechanism for the prevention of cholestasis involving cytochrome P4503A overexpression. J Investig Med 48 (1): 49-59, 2000.
    Pirmohamed, M., Kitteringham, N. R., and Park, B. K.: The role of active metabolites in drug toxicity. Drug Saf 11 (2): 114-44, 1994.
    Portier, E. J., de Blok, K., Butter, J. J., and van Boxtel, C. J.: Simultaneous determination of fentanyl and midazolam using high- performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 723 (1-2): 313-8., 1999.
    Puglisi, C. V., Pao, J., Ferrara, F. J., and de Silva, J. A.: Determination of midazolam (Versed) and its metabolites in plasma by high-performance liquid chromatography. J Chromatogr 344: 199-209., 1985.
    Roda, A., Hofmann, A. F., and Mysels, K. J.: The influence of bile salt structure on self-association in aqueous solutions. J Biol Chem 258 (10): 6362-70, 1983.
    Roda, A., Minutello, A., Angellotti, M. A., and Fini, A.: Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J Lipid Res 31 (8): 1433-43, 1990.
    Roda, A., Piazza, F., Baraldini, M., Speroni, E., Guerra, M. C., Cerre, C., and Cantelli Forti, G.: Taurohyodeoxycholic acid protects against taurochenodeoxycholic acid-induced cholestasis in the rat. Hepatology 27 (2): 520-5, 1998.
    Salphati, L., and Benet, L. Z.: Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers. Biochem Pharmacol 55 (4): 387-95, 1998.
    Salvioli, G., Igimi, H., and Carey, M. C.: Cholesterol gallstone dissolution in bile. Dissolution kinetics of crystalline cholesterol monohydrate by conjugated chenodeoxycholate-lecithin and conjugated ursodeoxycholate-lecithin mixtures: dissimilar phase equilibria and dissolution mechanisms. J Lipid Res 24 (6): 701-20, 1983.
    Sautou, V., Chopineau, J., Terrisse, M. P., and Bastide, P.: Solid-phase extraction of midazolam and two of its metabolites from plasma for high-performance liquid chromatographic analysis. J Chromatogr 571 (1-2): 298-304., 1991.
    Schaffner, F., Bacchin, P. G., Hutterer, F., Scharnbeck, H. H., Sarkozi, L. L., Denk, H., and Popper, H.: Mechanism of cholestasis. 4. Structural and biochemical changes in the liver and serum in rats after bile duct ligation. Gastroenterology 60 (5): 888-97, 1971.

    Schuetz, E. G., Strom, S., Yasuda, K., Lecureur, V., Assem, M., Brimer, C., Lamba, J., Kim, R. B., Ramachandran, V., Komoroski, B. J., Venkataramanan, R., Cai, H., Sinal, C. J., Gonzalez, F. J., and Schuetz, J. D.: Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 276 (42): 39411-8., 2001.
    Shaw, A. A., Hall, S. D., Franklin, M. R., and Galinsky, R. E.: The influence of L-glutamine on the depression of hepatic cytochrome P450 activity in male rats caused by total parenteral nutrition. Drug Metab Dispos 30 (2): 177-82., 2002.
    Shimada, T., and Guengerich, F. P.: Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci U S A 86 (2): 462-5, 1989.
    Shimada, T., Yamazaki, H., Mimura, M., Inui, Y., and Guengerich, F. P.: Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270 (1): 414-23, 1994.
    Takedomi, S., Matsuo, H., Yamano, K., Yamamoto, K., Iga , T., and Sawada, Y.: Quantitative prediction of the interaction of midazolam and histamine H2 receptor antagonists in rats. Drug Metab Dispos. 26 (4): 318-23, 1998.
    Tanaka, M., Nakura, H., Tateishi, T., Watanabe, M., Nakaya, S., Kumai, T., and Kobayashi, S.: Ursodeoxycholic acid prevents hepatic cytochrome P450 isozyme reduction in rats with deoxycholic acid-induced liver injury. Journal of Hepatology. 31 (2): 263-70, 1999.

    Thistle, J. L., and Larusso, N. F.: Combination of taurine or chenodeoxycholic acid with ursodeoxycholic acid therapy: effects on biliary lipids, bile acids and gallstones. In Enterohepatic Circulation of Bilew Acids and Sterol Metabolism, ed. by G. Paumgartner, A. Stiehl, and W. Gerok, pp. 355-9, 1984.
    Vletter, A. A., Burm, A. G., Breimer, L. T., and Spierdijk, J.: High-performance liquid chromatographic assay to determine midazolam and flumazenil simultaneously in human plasma. J Chromatogr 530 (1): 177-85., 1990.
    Watanabe, M., Tateishi, T., Asoh, M., Nakura, H., Tanaka, M., Kumai, T., and Kobayashi, S.: Effects of glucocorticoids on pharmacokinetics and pharmacodynamics of midazolam in rats. Life Sci 63 (19): 1685-92, 1998.
    Watkins, P. B.: Noninvasive tests of CYP3A enzymes. Pharmacogenetics 4 (4): 171-84, 1994.
    Waxman, D. J.: P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 369 (1): 11-23, 1999.
    Westlind, A., Malmebo, S., Johansson, I., Otter, C., Andersson, T. B., Ingelman-Sundberg, M., and Oscarson, M.: Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 281 (5): 1349-55, 2001.
    Woo, G. K., Williams, T. H., Kolis, S. J., Warinsky, D., Sasso, G. J., and Schwartz, M. A.: Biotransformation of [14C]midazolam in the rat in vitro and in vivo. Xenobiotica 11 (6): 373-84, 1981.

    Wrighton, S. A., Schuetz, E. G., Watkins, P. B., Maurel, P., Barwick, J., Bailey, B. S., Hartle, H. T., Young, B., and Guzelian, P.: Demonstration in multiple species of inducible hepatic cytochromes P-450 and their mRNAs related to the glucocorticoid-inducible cytochrome P-450 of the rat. Mol Pharmacol 28 (3): 312-21, 1985.
    Yamano, K., Yamamoto, K., Kotaki, H., Sawada, Y., and Iga, T.: Quantitative prediction of metabolic inhibition of midazolam by itraconazole and ketoconazole in rats: implication of concentrative uptake of inhibitors into liver. Drug Metab Dispos. 27 (3): 395-402, 1999.
    Yamazaki, H., Inoue, K., Turvy, C. G., Guengerich, F. P., and Shimada, T.: Effects of freezing, thawing, and storage of human liver samples on the microsomal contents and activities of cytochrome P450 enzymes. Drug Metab Dispos 25 (2): 168-74., 1997.
    行政院衛生署: 國民營養現況:1993-1996 國民營養健康狀況變遷調查結果, 1998.

    下載圖示 校內:2004-08-26公開
    校外:2004-08-26公開
    QR CODE