簡易檢索 / 詳目顯示

研究生: 莊予良
Chuang, Yu-Liang
論文名稱: 退火溫度對銅/矽薄膜之壓痕結構效應研究
The effects of annealing temperature on the microstructure of nanoindented Cu/Si thin films
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 86
中文關鍵詞: 銅薄膜退火處理奈米壓痕
外文關鍵詞: Cu/Si flim, annealed, nanoindenter
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要討論退火溫度對銅/矽薄膜之壓痕結構效應。實驗首先分別在(100) 方向之矽晶圓上製作厚度為800 nm以及1800 nm之銅薄膜,並利用光罩微影系統在薄膜上蝕刻出一矩陣圖,此矩陣圖像由本實驗室先前所開發,其目的為:當使用光學/電子顯微鏡時,可以藉由矩陣之圖形建立之座標,快速找到壓痕所在位置。隨後利用奈米壓痕量測儀(MTX-XP)測量薄膜之硬度與楊氏係數(壓痕深度為2000 nm),並且同時製作出一微小的表面破壞。壓痕測試完後,利用快速退火爐(RTA)分別加溫至160℃以及210℃,並持溫十秒鐘,藉以比較未加熱及不同加熱條件下,退火溫度對銅/矽薄膜之壓痕結構效應。
    巨觀機械性質的量測結果顯示:各項機械性質曲線之趨勢受壓痕尺寸效應 (在壓痕深度小於50 nm前) 及基材效應 (當壓痕深度接近基底時) 所影響。厚度為800 nm之銅薄膜試片最後之硬度與楊氏模數分別為2.64 GPa以及142.27GPa:而厚度為1800 nm試片之硬度與楊氏模數分別為0.82GPa以及75.18GPa。微觀組織方面,當銅/矽薄膜受到奈米壓痕以及退火處理後,直接受到壓痕作用之區域會從原本的單晶矽變為非晶矽或是多晶矽以及非晶矽之混合相。一般而言,退火溫度較高時,直接受到壓痕作用之區域多以多晶矽以及非晶矽之混合相之形貌出現。而壓痕直接作用區之周圍會有部分的矽發生變形以及滑移,最外圍之矽則仍保單晶矽之形貌。除了薄膜厚度為1800 nm退火溫度為160℃的試片外,其餘條件皆可在TEM試片中發現η-Cu3Si之存在,因此證明壓痕行為可降低製程溫度。另外根據成份分析可以知道,壓痕影響區之銅含量較周圍之矽來的高,因此我們可以說明:壓痕作用有助於特定位置之擴散行為。

    This study explores the affections to Cu/Si film results from annealed temperature. First, make 800 nm depth and 1800 nm depth Cu film separately on (100) Si wafer in the experiment. And use electron beam lithography system, EBL to sculpt one matrix image on the film. The matrix image is developed by our laboratory previously, and the purpose is when we use OM and SEM, we can quickly find where the indentation is by the way constructing coordinates by pictures of matrix image. Then, we use nanoindenter-XP (MTX-XP) to measure film hardness and Young’s modulus, and make a tiny damage on the surface simultaneously. After indentation testing. use Rapid thermal annealing, RTA whichs temperatures are raised to 160℃ and 210℃ separately and keep their temperatures for ten seconds, in order to compare under the conditions of no heating and heating differently, the affections to Cu/Si film results from annealed temperature .
    The measuring results of nanoindenter shows that:The curves tendency of those mechanical characters are affected by indentation size effect and surface roughness for indentation depths of less than 50 nm, and by the substrate effect for the indenter near the substrate. The hardness and Young’s modulus of the 800 nm Cu film chip are measured as 2.64 GPa and 142.27 GPa respectively. The hardness and Young’s modulus of the 1800 nm Cu film chip are measured as 0.82 GPa and 90 GPa respectively. On the aspect of microstructural, after Cu/Si film dealed with nanoindenter and annealing,the area which is affected directly by indentation become amorphous or the mixed phase of polycrystal and amorphous from single-crystal Si 。Generally speaking, when annealing temperture is higher, the area which is affected directly by indentation shows more the mixed phase of polycrystal and amorphous. The deformation and slip are happened by the area beside the indentation affected zone. The silicon outside of the deformation area is still preserve the appearance of single-crystal Si。The copper silicide is found at the 800 nm Cu chip annealed at 160 and 210 ℃ and 1800 nm Cu chip annealed at 210 ℃. Besides, according to EDS, we can know that the quantity of Cu in indentation affected zone is more than around. Thus, we can interpret that the indentation is conducive to diffusion。

    中文摘要 I ABSTRACT II 誌謝 IV 總目錄 V 圖目錄 VIII 第一章 前言 1 第二章 理論與文獻回顧 3 2-1奈米壓痕理論 3 2-1-1奈米壓痕數學模型 3 2-1-2連續勁度量測法 (Continuous stiffness measurement, CSM)[6] 6 2-2影響薄膜量測之因素 8 2-2-1尺寸效應 (Indentation size effect) 8 2-2-2表面粗糙度效應 (Surface roughness) 8 2-2-3基材效應 (Substrate effect) 9 2-2-4擠出和沉陷效應 (Pile-up & sink-in effect) 9 2-3奈米壓痕實驗前應注意的校正 10 2-3-1探針面積函數之校正 10 2-3-2熱漂移校正 11 2-3-3機械撓性校正 11 2-3-4靜電力校正 11 2-4 銅矽合金性質介紹 12 2-4-1共晶接合之製程 12 2-4-2銅矽合金之應用 12 第三章 實驗方法與步驟 19 3-1實驗流程 19 3-2實驗儀器與設備 19 3-2-1熱蒸鍍機 (Thermal evaporator) 20 3-2-2電子束微影光罩製作系統 (Electron beam lithography system, EBL) 21 3-2-3奈米三維量測儀及奈米薄膜材料試驗機 (Nano indenterXP) 22 3-2-4快速退火爐 (Rapid thermal annealing, RTA) 22 3-2-5聚焦式離子束顯微鏡 (Focused ion beam, FIB) 22 3-2-6高解析穿透式電子顯微鏡 (High resolution transmission electron microscope, HR-TEM) 23 3-3試片製備 23 3-3-1 微影蝕刻製程 24 3-4實驗方法與步驟 25 3-4-1奈米壓痕試驗 25 3-4-2對試片進行不同條件的退火處理 26 3-4-3微觀結構的觀察 26 第四章 實驗結果與討論 36 4-1 薄膜機械性質之討論 36 4-1-1壓痕深度與負載曲線之分析 36 4-1-2 壓痕深度與硬度曲線之分析 37 4-1-3 壓痕深度與楊氏模數曲線之分析 37 4-2 壓痕表面形貌之討論 38 4-2-1退火處理前後之壓痕表面形貌分析(I) 38 4-2-1退火處理前後之壓痕表面形貌分析(II) 39 4-3 壓痕剖面形貌之討論 39 4-3-1 壓痕剖面形貌討論(I) 40 4-3-2 壓痕剖面形貌討論(II) 41 第五章 結論 68 參考文獻 69 自傳 74

    1. J. G. Swadener, E. P. George and G. M. Pharr, “The correlation of the indentation size effect measured with indenters of various shapes,” Journal of the Mechanics and Physics of Solids, 50 (2002) 681-694.
    2. G. M. Pharr, “Measurement of mechanical properties by ultra-low load indentation,” Materials Science and Engineering A, 253 (1998) 151-159.
    3. M. Almasri, B. Altemus, A. Gracias, L. Clow, N. Tokranova, J. Castracane and B. Xu, “Reliability study of wafer bonding for Micro-Electro-Mechanical Systems,” Proceedings of SPIE, Vol. 5343 (SPIE, Bellingham, WA, 2004) 79-86.
    4. C. Anthony and C. Fischer, “Nanoindentation,” 2nd ed. Springer, N. Y. (2004).
    5. S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 2nd ed. McGraw-Hill, N. Y. (1951).
    6. X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Materials Characterization, 48 (2002) 11-36.
    7. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7 No. 6 (1992) 1564-1583.
    8. G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research, Vol. 7 No.3 (1992) 613-617.
    9. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research, Vol. 19 No. 1 (2004) 3-20.
    10. I. Manika and J. Maniks, “Size effects in micro- and nanoscale indentation,” Acta Materialia, 54 (2006) 2049-2056.
    11. K. D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris and G. Erkens, “The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation,” Materials Characterization, 49 (2003) 149-156.
    12. M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, Ph. Houdy and J. L. bozet, ”Nanoindentation investigation of Ti/TiN multilayers films,” Journal of Applied Physics, Vol. 87 No.11 (2000) 7753-7757.
    13. F. K. Mante, G. R. Baran and B. Lucas, “Nanoindentation studies of titanium single crystals,” Biomaterials, Vol. 20 No.11 (1999) 1051-1055.
    14. M. S. Bobji and S. K. Biswas, “Deconvolution of hardness from data obtained from nanoindentation of rough surfaces,” Journal of Materials Research, Vol. 14 No. 6 (1999) 2259-2268.
    15. M. Qasmi, P. Delobelle, F. Richard and A. Bosseboeuf, “Effect of the residual stress on the determination through nanoindentation technique of the Young's modulus of W thin film deposit on SiO2/Si substrate,” Surface & Coatings Technology, 200 (2006) 4185-4194.
    16. A. Bolshakov and G. M. Pharr, “Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques,” Journal of Materials Research, Vol. 13 No. 4 (1998) 1049-1058.
    17. K. W. McElhaney, J. J. Vlassak and W. D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments,” Journal of Materials Research, Vol. 13 No. 5 (1998) 1300-1306.
    18. K. Miyake, S. Fujisawa, A. Korenaga, T. Ishida and S. Sasaki, “The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation,” Japanese Journal of Applied Physics, Vol. 40 No. 7B (2004) 4602-4605.
    19. Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo, “Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness,” Mater. Sci. Eng. A, 427 (2006) 232-240.
    20. B. Bokhonov and M. Korchagin, “In situ investigation of stage of the formation of eutectic alloys in Si-Au and Si-Al systems,” J. Alloys and Compounds, 312 (2000) 238-250.
    21. B. Yang and T. G. Nieh, “Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass,” Acta Materialia, 55 (2007) 295-300.
    22. R. Rao, J. E. Bradby, S. Ruffell and J. S. Williams, “Nanoindentation-induced phase transformation in crystalline silicon and relaxed amorphous silicon,” Microelectronics Journal, 38 (2007) 722-726.
    23. Z. Zong, J. Lou, O. O. Adewoye, A. A. Elmustafa, F. Hammad and W. O. Soboyejo, “Indentation size effects in the nano- and micro-hardness of fcc single crystal metals,” Materials Science and Engineering A, 434 (2006) 178-187.
    24. K. Durst, B. Backes and M. Gken, “Indentation size effect in metallic materials: Correcting for the size of the plastic zone,” Scripta Materialia, 52 (2005) 1093-1097.
    25. A. J. Leistner, A. C. Fischer-Cripps and J. M. Bennett, “Indentation hardness and modulus of the surface of a large super-polished single crystal silicon sphere,” Proceedings of the International Society of Optical Engineering (SPIE), Bellingham, 5179 Optical Materials and Strucyures Technologies (2003) 215-222.
    26. J. Biener, A. M. Hodge, A. V. Hamza, L. M. Hsiung and J. H. Satcher, Jr, “Nanoporous Au: A high yield strength material,” J. Appl. Phys. 97, 024301 (2005) 1-4.
    27. Te-Hua Fang, Win-Jin Chang, “Nanomechanical properties of copper tin films on different substrates using the nanoindentation technique,” Microelectronic Eigineering 65 (2003) 231-238
    28. D. Beegan, S. Chowdhury, M.T. Laugier, “Work of indentation methods for determining copper film hardness,” Surface & Coatings Technology 192(2005) 57-63
    29. D. Beegan, S. Chowdhury, M.T. Laugier, “Comparison between nonaindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidized silicon substrates,” Surface & Coatings Technology 201(2007) 5804-5808
    30. S.H. Hong, K.S. Kim, Y.M. Kim, J.H. Hahn, C.S. Lee, and J.H. Park, “Characterization of elastic moduli of Cu thin films using nanoindentation technique,” Composites Science and Technology 65 (2005) 1401–1408
    31. D. Huo, Y. Liang, and K. Cheng, “An investigation of nanoindentation tests on the single crystal copper thin film via an atomic force microscope and molecular dynamics simulation”, proc. IMechE vol. 221 part C: J. Mechanical Engineering Science, pp. 259-266, 2007.
    32. A. A. Elmustafa and D. S. Stone, “Indentation size effect in polycrystalline F.C.C. metals,” Acta Materialia, 50 (2002) 3641-3650.
    33. S. Chen, L. Liu and T. Wang, “Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations,” Surface & Coatings Technology, 191 (2005) 25-32.
    34. L. Siller, N. Peltekis, S. Krishnamurthy and Y. Chao, “Gold film with gold nitride-A conductor but harder than gold,” Appl. Phys. Lett. 86, 221912 (2005) 1-3.
    35. R. El. Bouayadi, G Regula, B. Pichaud, M. Lancin, C. Dubois, and E. Ntsoenzok, “Gettering of Au and of Cu and Ni Contamination in Silicon By Cavities Induced by High Energy He Implantation,” phys. stat. (b) 222,319 (2000).

    下載圖示 校內:立即公開
    校外:2009-07-08公開
    QR CODE