簡易檢索 / 詳目顯示

研究生: 王齊中
Wang, Chi-Chung
論文名稱: 致動器衝擊對無閥流體驅動系統非線性動態響應之影響
Effects of Actuator Impact on the Nonlinear Dynamics of a Valveless Pumping System
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 90
中文關鍵詞: 無閥流體系統驅動Liebau 現象致動器衝擊效應非線性動力學
外文關鍵詞: Valveless pumping, Liebau effect, actuator impact, nonlinear dynamics.
相關次數: 點閱:146下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無閥流體驅動現象廣泛存在於工程系統中與生物體內,且為其中工作流體輸送之重要助力、甚或主力。本文中我們考慮以一由兩條硬管連結兩個可延展流體儲存槽所組成之封閉無閥流體迴路,並為其建構了一套分段線性之總括參數數學模型,以期釐清擠壓致動器衝擊效應對無閥流體驅動動態響應的影響,這是長久以來被忽略的重要課題。同時,漸近分析與數值計算結果指出,擠壓頻率以及其他系統參數對於致動器與受壓槽間的交互作用具有重要的影響,進而使得系統動態行為甚為豐富多樣。具體而言,在本文中我們除了利用漸進方法計
    算致動器與受壓槽間各種不同的交互作用模式轉換之臨界頻率外,也針對前述數學模型進行有系統的數值參數探討,從而歸納出系統動態響應之可能類型,以及各類型響應所對應之系統參數範圍。不同類型的動態響應,對於系統平均流量將有截然不同的影響;也對平均壓力產生趨勢上的改變。同時,藉由追蹤若干特徵相位角 ( 例如在一擠壓週期中,致動器與受壓槽脫離或碰撞時的相位角 ) 隨擠壓頻率變動之趨勢,我們也明確地指認各類型系統動態響應的關連性與演進過程。同時,系統的穩定性也透過線性穩定度分析法進行探討與歸納。整體而言,我們透過一簡要物理模型,成功解釋擠壓致動器與受壓槽間的交互作用對系統動態響應影響甚鉅,在工程設計實務上,必須謹慎考慮此衝擊效應以達成不同的工程目的。在基礎理論研究方面,也對於無閥流體系統的根本機制探索有更進一步的貢獻。

    Valveless pumping assists in fluid transport in various biomedical and engineering systems. Here we focus on one factor that has often been overlooked in previous studies of valveless pumping, namely the impact that a compression actuator exerts upon the pliant part of the system when they collide. In particular, a fluid-filled closed-loop system is considered, which consists of two distensible reservoirs connected by two rigid tubes, with one of the reservoirs compressed by an actuator at a prescribed frequency. A lumped-parameter model with constant coefficients accounting for mass and momentum balance in the system is constructed. Based upon such a model, a mean flow in the fluid loop can only be produced by system asymmetry and the nonlinear effects associated with actuator impact. Through asymptotic and numerical solutions of the model, a systematic parameter study is carried out, thereby revealing the rich and complex system dynamics that strongly depends upon the driving frequency of the actuator and other geometrical and material properties of the system.
    In particular, a number of critical frequencies that characterize the interactions between the actuator and the system are calculated asymptotically. Guided by such critical frequencies, the numerical results are categorized into different types of dynamical responses, and the parameter regions for their existence are systematically determined. Moreover, the transition of different system responses are observed through critical phase (which corresponding to the moment when different system responses occur) tracking.

    摘要 i Abstract iii 致謝 v Contents ix List of Tables xiii List of Figures xv Nomenclature xix Acronyms xxi 1 Introduction 1 1.1 Motivation and objectives 1 1.2 Literature review 2 1.3 Further applications of valveless pumping in biomedical engineering and biology 10 1.3.1 Cardiopulmonary resuscitation (CPR) 10 1.3.2 Heart assist devices 12 1.3.3 Varicose veins and its treatment 15 1.3.4 Valveless pumping in nature 16 ix1.4 Outline of this thesis 17 2 Basic Formulation 19 2.1 Model system setup and constitutive relations 19 2.2 Mass conservation and momentum balance 22 2.3 Initial conditions 23 2.4 Sample parameter values 23 3 Mode Switching and Jump Conditions 27 3.1 Steady periodic system response in the contact mode 27 3.2 Threshold frequency 29 3.3 Separation of the V0 reservoir from the actuator 30 3.4 Blocking of the fluid loop 30 3.5 Collision of the V0 reservoir with the actuator 31 3.6 Mode switching at the reservoir–actuator collision 32 3.7 Numerical method 32 4 Steady Periodic Purely-Free System Response 35 4.1 Asymptotic solution of the free-mode system response 35 4.2 Periodicity and separation conditions 37 4.3 Loop blocking condition 39 4.4 Linear stability analysis 41 5 Further Numerical Results and Discussion 45 5.1 System dynamics for various volume ratios Vmin/Vmax 45 5.2 Demarcation of system response 52 5.3 Frequency dependence of actual duty cycle, mean flowrate and mean pressure 57 5.4 Frequency dependences of various characteristic phases 63 5.5 Seemingly chaotic system responses 68 6 Conclusion 75 6.1 Summary 75 6.2 Biomedical and microfluidics relevance of our results 77 6.3 Future work 80 References 83

    [1] Liebau G, ¨Uber ein ventilloses Pumpprinzip, Naturwiss 41:327, 1954.
    [2] Moser M, Huang JW, Schwarz GS, Kenner T, Noordergraaf A, Impedance defined flow: Generalisation of William Harvey’s concept of the circulation — 370 years later, Int J
    Cardiovasc Med Sci 1:205–211, 1998.
    [3] Hove JR, K¨oster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M, Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , Nature 421:172–177, 2003.
    [4] Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai H-J, Hove JR, Fraser SE, Dickinson ME, Gharib M, The embryonic vertebrate heart tube is a dynamic
    suction pump, Science 312:751–753, 2006.
    [5] Rinderknecht D, Hickerson AI, Gharib M, A valveless micro impedance pump driven by electromagnetic actuation, J Micromech Microeng 15:861–866, 2005.
    [6] Yamahata C, Lotto C, Al-Assaf E, Gijs MAM, A valveless micropump using electromagnetic actuation, Microfluid Nanofluid 1:197–207, 2005.
    [7] Lobl TJ, Pananen JE D, Canfield DL, Nagy AI, Krag AL, Valveless impedance pump drug delivery systems, US Patent US20090209945A1, 2009.
    [8] Glenn E, Power of a Human Heart, The Physics Factbook, URL, http://hypertextbook.com/facts/2003/IradaMuslumova.shtml84
    [9] Weber EH, De pulsu, resorptione, auditu et tactu, Annotationes Anatomicae et Physiologicae, Lipsiae, 1834.
    [10] Donders FC, Physiologie des Menschen, Leipzig, 1856.
    [11] Ottesen JT, Noordergraff, Donders vs Harvey, Proc IEEE 26th Ann Northeast Bioeng Conf 43:43–44, 2001.
    [12] Ozanam M, De la circulation veineuse par influence, C. R. Hebd. Seances Acad. Sci 93:92–94, 1881.
    [13] Pearson Education, Muscle pump, URL, http://www.rebuildermedical.com/images/muscle_pump.jpg
    [14] Liebau G, Arterielle Pulsation und venöse Repulsation, Z Gesamte Exp Med 123:71–90, 1954.
    [15] Liebau G, Die Strömungsprinzipien des Herzens, Z Kreislaufforsch 44:677–684, 1955.
    [16] Liebau G, Herzpulsation und Blutbewegung, Z Gesamte Exp Med 125:482–498, 1955.
    [17] Liebau G, Aus welchem Grunde bleibt die Blutf¨orderung durch das Herz bei valvul¨arem
    Versagen erhalten?, Z Kreislaufforsch 45:481–488, 1956.
    [18] Kenner T, Biological asymmetry and cardiovascular blood transport , Cardiovasc Eng: An Int J 4:209–218, 2004.
    [19] Kenner T, Structural asymmetry and the optimisation of transport function in the circulation–review,Scripta Medica (Masaryk University, Brno) 75:81–86, 2002.
    [20] Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH, Asymmetric redirection of flow through the heart, Nature 404:759–761, 2000.
    [21] Mahrenholtz O, Ein Beitrag zum F¨orderprinzip periodisch arbeitender, ventilloser Pumpen, Forsch Ing-Wes 29:47–56, 73–81, 1963.
    [22] Manopoulos CG, Mathioulakis DS, Tsangaris SG, One-dimensional model of valveless pumping in a closed loop and a numerical solution, Phys Fluids 18:017106, 2006.
    [23] Bredow HJ, Untersuchung eines ventillosen pumpprinzips, Fortschr-Ber 6:7:1, 1968.[24] Bredow HJ, Untersuchungen über ein vom menschlichen Kreislauf abgeleitetes, ventilloses Strömungsprinzip, Verh Dtsch Ges Kreislaufforsch 34:296, 1968.
    [25] Rath HJ, Berechnungen zu einem ventillosen Pumpprinzip, Diss., TU Hannover, 1976.
    [26] Rath HJ, Mathematisches Modell einer ventillosen Schlauchpumpe, ZAMM 57:201–203, 1977.
    [27] Rath HJ, Teipel I, Der F¨ordereffekt in ventillosen, elastischen Leitungen, ZAMP 29:123–133, 1978.
    [28] Thomann H, A simple pumping mechanism in a valveless tube, ZAMP 29:169–177, 1978.
    [29] Beikzadeh, Impedance pump: basic principles, URL, http://www.youtube.com/watch?v=k1YKEqh4lGA
    [30] Beikzadeh, Open loop impedance pump, URL, http://www.youtube.com/watch?v=0_jT5n0W_Us
    [31] Beikzadeh, Impedance pump possible applications, URL, http://www.youtube.com/watch?v=1xjyJp77FP8
    [32] Takagi S, Saijo T, Study of a piston pump without valves (1st report, on a pipe-capacity-sysem with a T-junction), Bull JSME 26:1366–1372, 1983.
    [33] Takagi S, Takahashi K, Study of a piston pump without valves (2nd report, pumping effect and resonance in a pipe-capacity-system with a T-junction), Bull JSME 28:831–836, 1985.
    [34] Ottesen JT, Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation, J Math Biol 46:309–332, 2003.
    [35] Babbs CF, Behavior of a viscoelastic valveless pump: a simple theory with experimental validation, BioMedical Engineering OnLine 9:42, 2010.
    [36] Jung E, Peskin CS, Two-dimensional simulations of valveless pumping using the immersed boundary method,J Sci Comput 23:19–45, 2001.86
    [37] Hickerson AI, Rinderknecht D, Gharib M, Experimental study of the behavior of a valveless impedance pump, Exp Fluids 38:534–540, 2005.
    [38] Hickerson AI, An experimental analysis of the characteristic behaviors of an impedance pump , Dissertation (Ph.D.), California Institute of Technology , 2005.
    [39] Hickerson AI, Gharib M, On the resonance of a pliant tube as a mechanism for valveless pumping, J Fluid Mech 555:141–148, 2006.
    [40] Avrahami I, Gharib M, Computational studies of resonance wave pumping in compliant tubes, J Fluid Mech 608:139–160, 2008.
    [41] Liebau G, Die Bedeutung der Trägheitskräfte für die Dynamik des Blutkreislaufs, Z.Kreislaufforsch 46:428–438,1957.
    [42] Manopoulos CG, Tsangaris S, Modelling of the blood flow circulation in the human foetus by the end of the third week of gestation, Cardiovasc Eng 5:29–35, 2005.
    [43] M¨anner J, Thrane L, Norozi K, Yelbuz TM, In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: A contribution to the understanding of the ontogenesis of cardiac pumping function, Dev Dynam 238:3273–3284, 2009.
    [44] M¨anner J, How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube, Dev Dynam 239:1035–1046, 2010.
    [45] Loumes L, Avrahami I, Gharib M, Resonance pumping in a multilayer impedance pump,Phys Fluids 20:023103, 2008.
    [46] Loumes L, Multilayer impedance pump: a bio-inspired valveless pump with medical applications, Dissertation (Ph.D.), California Institute of Technology, 2007.
    [47] Singhal V, Garimella SV, Murthy JY, Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps, Sens Actuators A: Phys 113:226–235, 2004.
    [48] Propst G, Pumping effects of periodically forced flow configurations, Phys D 217:193–201, 2006.[49] Jung E, A mathematical model of valveless pumping: A lumped model with time-dependent compliance, resistance, and inertia, Bull Math Biol 69:2181–2198, 2007.
    [50] Wang CC, Yang TS, A lumped model for valveless pumping, J Biomech, abstract of an oral presentation at the XXI Congress, International Society of Biomechanics 40 (S2),:S264, 2007.
    [51] Borz`i A, Propst G, Numerical investigation of the Liebau phenomenon, ZAMP 54:1050–1072, 2003.
    [52] Timmermann S, Ottesen JT, Novel characteristics of valveless pumping, Phys Fluids 21:053601, 2009.
    [53] Bringley T, Childress S, Vandenberghe N,Zhang J, An experimental investigation and a simple model of a valveless pump, Phys Fluids 20:033602, 2008.
    [54] Ghabib M, Rinderknecht D, Gharib M, Device and method for treating hydrocephalus, US Patent US20050277865A1, 2005.
    [55] Ghabib M, Rinderknecht D, Loumes L, Forouhar AS, Hickerson A, Resonant multilayered impedance pump, US Patent US20070177997A1, 2007.
    [56] Ghabib M, Rinderknecht D, A, Device and method for treating hydrocephalus, US Patent US20050277865A1, 2005.
    [57] Alan Mason Chesney Medical Archives, Johns Hopkins Medical Institutions, The William B. Kouwenhoven collection, repository guide to the personal papers collections, URL,
    http://www.medicalarchives.jhmi.edu/sgml/kouwnhvn.html
    [58] Jung E, Babbs CF, Lenhart S, Optimal strategy for cardiopulmonary resuscitation with continuous chest compression, J Acad Emerg Med 13:715–721, 2006.
    [59] Hoeben RM, Experimental investigations into the role of impedance defined flow during CPR, Thesis (MSc), Eindhoven University of Technology, 2009.
    [60] JOLIFE AB, Lucas ™ chest compression system, heart thumper, URL, http://www.youtube.com/watch?v=znIidvdmqso88
    [61] Yang TS, Wang CC, Effects of actuator impact on the nonlinear dynamics of a valveless pumping system, accepted to be published in J Mech Med Biol, DOI: 10. 1142/ S0219519410003800, 2010.
    [62] Wang CC,Yang TS, Dynamical responses of a valveless fluid loop excited by the impact of a compression actuator , accepted to be published in J CSME, 2010.
    [63] Michigan Instruments, The evolution of mechanical cardiopulmonary resuscitation (CPR) through the decades, URL, http://www.michiganinstruments.com/index.htm
    [64] The Dove Clinic, How EECP works, URL, http://www.eecp.org.uk/index.html
    [65] EECP heart clinic, What is EECP Enhanced External Counter Pulsation, URL, http://www.eecpclinic.com/
    [66] Suresh K, Simandl S, Lawson WE, Hui JCK, Lillis O, Burger L, Guo T, Cohn P, Maximizing the Hemodynamic Benefit of Enhanced External Counterpulsation Clin Cardiol 21:649-653, 1998.
    [67] Wikipedia, Intra-aortic balloon pump, URL, http://en.wikipedia.org/wiki/Intra-aortic_balloon_pump
    [68] Texas Heart Institute, Intra-aortic balloon pump, URL,http://www.texasheartinstitute.org/Research/Devices/iabp.cfm
    [69] Tokai medical products, IABP とは?(製品説明 ), URL, http://tokaimedpro.co.jp/seihin/sita.html
    [70] Youtube, IABP Intraaortic Ballon Pump, URL, http://www.youtube.com/watch?v=o11fhdVOYWA
    [71] Wikipedia, Ventricular assist device, URL, http://en.wikipedia.org/wiki/Ventricular_assist_device
    [72] MiTiHeart Corporation, Left ventricular assist device, URL, http://www.mitiheart.com/
    [73] Lee K, Mun CH, Lee SR, Min BG, Yoo KJ, Park YW, Won YS, Hemodialysis using a valveless pulsatile blood pump, J ASAIO 54:191–196, 2008.
    [74] Papaioannou TG, Mathioulakis DS, Stamatelopoulos KS, Gialafos EJ, Lekakis JP, Nanas J, Stamatelopoulos SF, Tsangaris SG, New aspects on the role of blood pressure and
    arterial stiffness in mechanical assistance by intra-aortic balloon pump: In-vitro data and their application in clinical practice, Artif Organs 28:717–727, 2004.
    [75] Rosenfeld M, Avrahami I, Net flow rate generation by a multi-pincher impedance pump, Comput Fluids 39:1634–1643, 2010.
    [76] Shin SJ, Sung HJ, Three-dimensional simulation of a valveless pump, Int J Heat Fluid Flow 31:942–951, 2010.
    [77] Wikipedia, Varicose veins, URL, http://en.wikipedia.org/wiki/Varicose_veins
    [78] National Heart Lung and Blood Ibstitute, Varicose veins, URL, http://www.nhlbi.nih.gov/health/dci/Diseases/vv/vv_all.html
    [79] University of Winnipeg, Evolution Ecology and Biodiversity Lab Manual Online, Phylum chordata, URL, http://kentsimmons.uwinnipeg.ca/16cm05/16labman05/lb7pg1.htm
    [80] Pearson Education, Phylum chordata, URL, http://kentsimmons.uwinnipeg.ca/16cm05/16labman05/lb7pg1.htm
    [81] Vogel S, Living in a physical world X. Pumping fluids through conduits, J Biosci 32: 207–222, 2007.
    [82] Johnson RS, Singular Perturbation Theory, Springer, Berlin, 2005.
    [83] Kenner T, Moser M, Tanev I, Ono K, The Liebau-effect or on the optimal use of energy for the circulation of blood, Scripta Medica (Masaryk University, Brno) 73:9–14, 2000.
    [84] 沈弘俊,李青峻,許家睿,吳咨亨 , 無閥門微幫浦裝置元件之介紹與其應用 , URL,http://www.stam.org.tw/Newsletter/123/2008-6RVMA.pdf, 2008.
    [85] American Heart Association, Highlights of the 2010, Guidelines for CPR and ECC, 2000.
    [86] Advanced Circulatory Systems INC. , Active Compression Decompression (ACD) CPR,
    URL, http://www.resqpod.com.au/publications/CardioPump.pdf90
    [87] Cohen TJ, Goldner BG, Maccaro PC, Ardito AP, Trazzera S, Cohen MB, Dibs SR, A Comparison of active compression–decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for cardiac arrests occurring in the hospital, NEJM 329:1918–1921, 1993.
    [88] Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF, Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets, Phil. Trans. R. Soc. Lond. A 362:1087–1104, 2004.
    [89] Lee YK, Deval J, Tabeling P, Ho CM, chaotic mixing in electrokinetically and pressure driven micro flows , The 14th IEEE Workshop on MEMS Interlaken, Switzerland, Jan.,
    2001.
    [90] Huang XY, Wen CY, Jiao ZJ, A standing wave model for acoustic pumping effects in microchannels, J apacoust 71:164–168, 2010.
    [91] Wen CY, Cheng CH, Jian CN, Nguyen TA, Hsu CY, Su YR, A valveless micro impedance pump driven by PZT actuation, Materials Science Forum 505–507:127–132, 2006.
    [92] Doan DH, Study on a two-dimensional valveless impedance pump, Thesis (MS), Dayeh University, 2006.
    [93] Wen CY, Chang HT, Design and characterization of valveless impedance pumps, J Mech 25:345–354, 2009.
    [94] Lin CW, Theoretical analysis of open–loop valveless pumps, Thesis (MS), National Cheng Kung University, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE