簡易檢索 / 詳目顯示

研究生: 石明昌
Shih, Ming-Chang
論文名稱: 硒化鋅系列金半金光檢測器之製作與研究
Fabrication and Study of the ZnSe-based Metal-Semiconductor-Metal (MSM) Photodetector
指導教授: 蘇炎坤
Su, Yan-Kuin
藍文厚
Lan, Wen-How
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 73
中文關鍵詞: 硒化鋅金半金光檢測器
外文關鍵詞: ZnSe, MSM photodetector
相關次數: 點閱:76下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中我們以分子束磊晶系統(MBE)在半絕緣的砷化鎵(GaAs)基板上成長一系列硒化鋅(ZnSe)為主的二六族化合物半導體材料,並利用光激發螢光頻譜(PL)與X-ray繞射量測來檢驗磊晶品質。接著我們以不同組成、不同厚度的片子來製作一系列的金半金光檢測器,其中並包含不同的指寬與指距的設計,而且進一步地比較其中差異對元件特性的影響。
    以硒化鋅製作的光檢測器,因為與基板有0.27%的晶格不匹配,所以在接面處產生許多缺陷與差排,這直接影響到元件之光響應度。接著我們以硫硒化鋅(ZnSSe)來製作光檢測器,可是並沒有因較匹配的晶格常數而提高其光響應度。最後我們成功地在砷化鎵基板上成長了高品質的硫碲硒化鋅(ZnSTeSe),以其製作金半金光檢測器,在偏壓為3伏特且沒有抗反射層的情況下最高的光響應度是0.4A/W。

    In this thesis, the II-VI ZnSe-based compound semiconductors were all grown on semi-insulated (SI) GaAs substrates by molecular beam epitaxy (MBE) method. The crystal quality of the sample was investigated by used of photoluminescence (PL) and X-ray diffraction analyzer. These fabricated ZnSe-based metal-semiconductor-metal (MSM) photodetectors were compared with different parameters, including composition ratio, finger width/spacing, and thickness of absorption layer.
    We found that a lot of defects and dislocations produced at ZnSe/GaAs interface (0.27% lattice mismatch) were resulted in degradation of responsivity of the ZnSe MSM photodetector. Although ZnSSe epilayer with smaller lattice mismatch was also grown on GaAs substrates, the responsivity of fabricated ZnSSe MSM photodetector was not improved. Therefore, high-quality quaternary ZnSTeSe epitaxial layers were grown on GaAs substrate successfully, and the responsivity of the ZnSTeSe MSM photodetector was about 0.4 A/W under 3 V reverse bias without any antireflection coating.

    Content Abstract (Chinese)...............................I Abstract (English)..............................II Content.........................................IV Figure Captions.................................VI Chapter 1 Introduction...........................1 Chapter 2 Theory of the MSM Photodetector........5 2-1 Operation Principle..........................5 2-2 Geometry Consideration.......................7 2-3 Theoretical Analysis.........................8 2-3-1 Dark Current...............................8 2-3-2 Responsivity and Quantum Efficiency.......10 Chapter 3 Experimental Arrangement..............13 3-1 Crystal Growth of II-VI Compound............13 3-2 Devices Structure and Fabrication...........14 3-3 Measurement of MSM Photodetector............16 3-3-1 Spectral Response.........................16 3-3-2 Current-Voltage Measurement under Different Irradiation...............................17 3-4 Analysis Tools..............................17 3-4-1 Photoluminescence (PL)....................17 3-4-2 X-Ray Diffraction (XRD)...................19 . Chapter 4 Result and Discussion.................20 4-1 Problems of Responsivity Measureement.......20 4-2 ZnSe MSM Photodetectors.....................21 4-2-1 Dark Current..............................22 4-2-2 Influences of the Electrodes and Absorption Profile of the MSM Photodetector..........22 4-2-3 Current-Voltage Behaviors under Different Irradiation...............................24 4-3 ZnSSe MSM Photodetectors....................26 4-4 ZnSTeSe MSM Photodetectors..................27 Chapter 5 Conclusions...........................29 REFERENCEs......................................30

    REFERENCES

    [1]D. Melo, L. Hemandez, M. Melendez-Lira, Z.
    Kivera-Alvarez, and I. Hernandez-Calderon,
    “Influence of Cl doping in the optical and
    electrical properties of ZnSe grown by
    molecular beam epitaxy,” SBMO/IEEE MTT-SIMOC’
    95.
    [2]R. L. Gunshor, A. V. Nurmikko, and N. Otsuka,
    “Blue lasers on the horizon,” IEEE Spectrum
    1993.
    [3]M. Razeghi and A. Rogalski, “Semiconductor
    ultraviolet detectors, J. Appl. Phys., vol.
    79, pp. 7433-7473, 1996.
    [4]F. Vigue, E. Tournie, and J.P. Faurie,
    “Evaluation of the Potential of ZnSe and Zn(Mg)
    BeSe Compounds for Ultraviolet
    Photodetection,” IEEE J. Quantum Electron.,
    vol.37, pp. 1146-1152, 2001.
    [5]Z. C. Huang, C. R. Wie, I. Na, H. Luo, D. B.
    Mott, and P. K. Shu, ”High performance ZnSe
    photoconductors,” Electron. Lett., vol. 32,
    no. 16, pp. 1507-1508, 1996.
    [6]A. Gerhard, J. Nurnberger, K. Schull, V. Hock,
    C. Schumacher, M. Ehinger, and W. Faschinger,
    “ZnSe-based MBE-grown photodiodes,” J. Cryst.
    Growth, vol. 184/185, pp. 1319-1323, 1998.
    [7]H. Hong, W. A. Anderson, J. Haetty, E. H. Lee,
    H. C. Chang, M. H. Na, H. Luo, and A. Petrou,
    “Nitrogen ion implanted ZnSe/GaAs p-i-n
    photodetectors,” J. Appl. Phys., vol. 84, no.
    4, pp. 2328-2333, 1998.
    [8]W. Faschinger, M. Ehinger, T. Schallenberg,
    and M. Korn, “High- efficiency p-i-n
    detectors for the visible spectral range based
    on ZnSTe-ZnTe supperlattices,” Appl. Phys.
    Lett., vol. 74, no. 22, pp. 3404-3406, 1999.
    [9]F. Vigue, E. Tournie, and J.P. Faurie, “ZnSe-
    based Schottky barrier photodetectors,”
    Electron. Lett., vol. 36, no. 4, pp. 352-354,
    2000.
    [10]F. Vigue, P. de Mierry, J. P. Faurie, E.
    Monroy, F. Calle, and E. Mufnoz, “High
    detectivity ZnSe-based Schottky barrier
    photodetectors for the blue and near-
    ultraviolet spectral range,” Electron.
    Lett., vol. 36, no. 9, pp. 826-827, 2000.
    [11]E. Monroy, F. Vigue, F. Calle, J. I. Izpura,
    E. Monuz, and J. P. Faurie, “Time response
    analysis of ZnSe-based Schottky barrier
    photodetectors,” Appl. Phys. Lett., vol. 77,
    no. 17, pp. 2761-2763, 2000.
    [12]Z. C. Huang, J. C. Chen, and D. Wickenden,
    “Characterization of GaN using thermally
    stimulated current and photocurrent
    spectroscopies and its application to UV
    detectors,” J. Cryst. Growth, vol. 170, pp.
    362-366, 1997.
    [13]C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi,
    J. Y. Chi, C.A. Chang, J. K. Sheu, and J. F.
    Chen, “GaN metal-semiconductor-metal
    ultraviolet photodetectors with transparent
    indium-tin-oxide Schottky contacts,” IEEE
    Photon. Technol. Lett., vol. 13, pp. 848-850,
    2001.
    [14]Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J.
    Chang, and J. K. Sheu, “GaN and InGaN metal-
    semiconductor-metal photodetectors with
    different Schottjy contact metals,” J. J.
    Appl. Phys., vol. 40, pp. 2996-2999, 2001.
    [15]S. J. Chang, Y. K. Su, W. R. Chen, W. H. Lan,
    W. J. Lin, Y. T. Cherng, C. H. Liu, and U. H.
    Liaw, “ZnSTeSe metal-semiconductor-metal
    photodetectors,” IEEE Photon. Tech. Lett.,
    vol. 14, no. 2, 2002.
    [16]Stephen Y. Chou, and Mark Y. Liu, “Nanoscale
    tera-hertz metal-semiconductor-metal
    photodetectors,” IEEE J. Quantum Electron.,
    vol. 28, no. 10, 1992.
    [17]Anthony W. Sarto and Bart J. Van Zeghbroeck,
    “Photocurrents in a metal-semiconductor-metal
    photodetector,” IEEE J. Quantum Electron.,
    vol. 33, no. 12, 1997.
    [18]Kevin F. Brennan, Joe Haralson H, Joseph W.
    Parks Jr, and Ali Salem, “Review of
    reliability issues of metal-semiconductor-
    metal and avalanche photodiode photonic
    detectors,” Microelectronics Reliability,
    vol. 39, pp. 1873-1883, 1999.
    [19]Ito M, and Wada O, “Low dark current GaAs
    MSM photodiodes using W-Si contacts,” IEEE
    J. Quantum. Electron., vol. 22, no. 7, pp.
    1073-1077, 1986.
    [20]Soole JBD, Schumacher H, “ InGaAs metal-
    semiconductor-metal photodetectors for long
    wavelength optical communications,” IEEE J.
    Quantum. Electron., vol. 27, no. 3, pp. 737-
    752, 1991.
    [21]Soole JBD, Schumacher H, “Transit-time
    limited frequency response of InGaAs MSM
    photodetectors,” IEEE Trans. Electron.
    Dev., vol. 37, no. 11, pp. 2285-2291, 1990.
    [22]Sze SM. Physics of semiconductor devices, 2nd
    ed., New York: Wiley; 1981.
    [23]Singh J. Semiconductor devices. New York:
    McGraw-Hill; 1994.
    [24]Bhattacharya P. Semiconductor optoelectronic
    devices, 2nd ed. New Jersey: Prentice Hall,
    1997.
    [25]S. V. Averine, Y. C. Chan, and Y. L. Lam,
    “Geometry optimization of interdigitated
    Schottky-barrier metal-semiconductor-metal
    photo- diode structures,” S. S. E., vol. 45,
    pp. 441-446, 2001.
    [26]Burm J, Litvin KI, Schaff WJ, and Eastman LF,
    “Optimization of high-speed metal-
    semiconductor-metal photodetectors,” IEEE
    Photon. Technol. Lett., vol. 6, no. 6, pp.
    722-724, 1994.
    [27]S. M. Sze, D. J. Coleman, Jr., and A. Loya,
    “Current transport in metal-semiconductor-
    metal (MSM) structures,” S. S. E., vol. 14,
    pp. 1209-1218, 1971.
    [28]Waclaw C. Koscielniak, Jean-luc Pelouard,
    Robert M. Kolbas, and Michael A. Littlejohn,
    “Dark current characteristics of GaAs metal-
    semiconductor-metal (MSM) photodetectors,”
    IEEE Trans. Electron. Dev., vol. 37, no. 7,
    pp. 1623-1629, 1990.
    [29]H. Hong and W. A. Anderson, “Cryogenic
    processed metal- semiconductor-metal (MSM)
    photodetectors on MBE grown ZnSe,” IEEE
    Trans. Electron. Dev., vol. 46, pp. 1127-
    1133, 1999.
    [30]Jinwook Burn and Lester F. Eastman, “Low-
    frequency gain in MSM photodiodes due to
    charge accumulation and image force
    lowering,” IEEE Photo. Tech. Lett., vol. 8,
    no. 1, pp. 113-115, 1996.
    [31]J. C. Carrano, T. Li, P. A. Grudowski, C. J.
    Eiting, R. D. Dupuis, and J. C. Campbell,
    “Comprehensive characterization of metal-
    semiconductor-metal ultraviolet
    photodetectors fabricated on single- crystal
    GaN,” J. Appl. Phys., vol. 83, pp. 6148-6160.
    [32]D. Walker, E. Monroy, P. Kung, J. Wu, M.
    Hamilton, F. J. Sanchez, J. Diaz, and M.
    Razeghi, “High speed low-noise metal-
    semiconductor- metal ultraviolet
    photodetectors based on GaN,” Appl. Phys.
    Lett., vol. 74, pp. 762-764, 1999.
    [33]I. K. Sou, Z. H. Ma, and G. K. L. Wong,
    "Photoresponse studies of ZnSSe visible-blind
    ultraviolet detectors: A comparison to ZnSTe
    detectors,” Appl. Phys. Lett., vol. 75, no.
    23, pp. 3707-3709, 1999.

    下載圖示 校內:立即公開
    校外:2002-07-12公開
    QR CODE