| 研究生: |
洪孟漢 Hung, Meng-Han |
|---|---|
| 論文名稱: |
開迴路無閥幫浦系統之實驗研究 Experimental Study of an Open-Loop Valveless Pumping System |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 開迴路無閥幫浦系統 、無閥流體驅動系統 、Liebau效應 、擠壓致動器衝擊效應 |
| 外文關鍵詞: | valveless pumping, open-loop system, Liebau effect, actuator impact effect |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無閥幫浦近年來被廣泛應用於微系統與生醫系統上,其主要原因是無閥幫浦內部沒有閥門動件,如此一來可以減少零件損壞時造成之維修困難,同時也可以避免破壞系統內部流體成分。從歷史文獻來看,無閥幫浦系統在擠壓過程中,擠壓致動器與受壓容器之間的交互作用對於系統輸送流體效率的影響是鮮少被拿出來討論的,因此在本文中我們將釐清此現象對無閥幫浦帶來的影響。
本研究我們利用兩條長度不同的硬管,分別從擠壓幫浦兩側連接至兩個開放式壓克力水槽,以構成-開迴路的無閥幫浦系統。在本文中我們討論到門檻頻率(亦即公稱工作週期在預壓系統中,可使系統與擠壓致動器分離之最低擠壓頻率)對於開迴路無閥幫浦性能的影響,並藉此引導出擠壓致動器的衝擊效應在擠壓過程中扮演的重要角色。實驗過程中我們也記錄了擠壓致動器與受壓容器的位移變化,並歸納與分析兩者之間的交互作用對於無閥幫浦系統在流體輸送效率上面有何關聯。除此之外,我們也變更擠壓進程與受壓容器剛性等實驗參數,以釐清這些參數對於系統驅動流體效果的影響,這對於我們日後在無閥幫浦系統的設計上將有所貢獻。
In recent years, valveless pumps have widely been used in various engineering and biomedical systems. Since there are no moving valves inside a valveless pump system, we could maintain the system with more ease, and avoid contaminating the working fluid in the system.
In this work, we use two rigid tubes with different lengths to connect an actuator with two open style acrylic water reservoirs, which constitute our experimental system. Then, we demonstrate that the threshold frequency(the lowest driving frequency of the actuator beyond which the pliant part of a precompressed system having a nominal duty cycle of unity would separate from the actuator) plays an important role in the open-loop valveless pumping system. Moreover, we discuss in thesis the influence of actuator impact on the performance of the open-loop valveless pumping system. For that purpose, we recorded the displacements of the actuator and the pliant part of the system in the experiments, and then analyzed how the interactions between the actuator and the pliant part of the system influence working fluid transport. In addition, we also vary the stroke of the actuator and the rigidity of pliant part of the system in the experiments, so as to investigate the effects of such parameters on the system performance.
[1] 吳咨亨. 無閥門壓電微幫浦與微混合器之整合設計. 應用力學硏究所 (國立臺灣大學, 台北,台灣, 2005)
[2] Weber, E. H., De pulsu, resorptione, auditu et tactu. Annotationes Anatomicae et Physiologicae Lipsiae, 1834.
[3] Donders, F. C., Physiologie des Menschen Leipzig, 1856
[4] Liebau, G., ¨Uber ein ventilloses Pumpprinzip, Naturwiss 41:327, 1954.
[5] Liebau, G., Arterielle Pulsation und venöse Repulsation, Z Gesamte Exp Med 123:71–90,1954.
[6] Liebau, G., Die Strömungsprinzipien des Herzens, Z Kreislaufforsch 44:677–684, 1955.
[7] Liebau, G., Aus welchem Grunde bleibt die Blutförderung durch das Herz bei valvulӓrem Versagen erhalten?, Z Kreislaufforsch 45:481–488, 1956.
[8] Mahrenholtz, O., Ein Beitrag zum F¨orderprinzip periodisch arbeitender, ventilloser Pumpen, Forsch Ing-Wes 29:47–56, 73–81, 1963.
[9] Bredow, H. J., Untersuchung eines ventillosen pumpprinzips, Fortschr-Ber 6:7:1, 1968.
[10] Bredow, H. J., Untersuchungen über ein vom menschlichen Kreislauf abgeleitetes, ventilloses Strömungsprinzip, Verh Dtsch Ges Kreislaufforsch 34:296, 1968.
[11] Takagi, S., Saijo, T., Study of a piston pump without valves (1st report, on a pipe-capacity-system with a T-junction), Bull JSME 26:1366–1372, 1983
[12] Takagi, S., Takahashi, K., Study of a piston pump without valves (2nd report, pumping effect and resonance in a pipe-capacity-system with a T-junction),Bull JSME 28:831–836, 1985.
[13] Moser, M., Huang, J. W., Schwarz GS, Kenner T, Noordergraaf A, Impedance defined flow:Generalisation of William Harvey’s concept of the circulation — 370 years later, Int JCardiovasc Med Sci 1:205–211, 1998.
[14] Ottesen, J. T., Valveless pumping in a fluid-filled closed elastic tube-system: onedimensional theory with experimental validation, J Math Biol 46:309-332, 2003.
[15] Hickerson, A. I., Rinderknecht, D., Gharib, M., Experimental study of the behavior of a valveless impedance pump, Exp Fluids 38:534–540, 2005.
[16] Hickerson, A. I., An experimental analysis of the characteristic behaviors of an impedance pump , Dissertation (Ph.D.), California Institute of Technology , 2005.
[17] Hickerson, A. I., Gharib, M., On the resonance of a pliant tube as a mechanism for valveless pumping, J Fluid Mech 555:141–148, 2006.
[18] Avrahami, I., Gharib, M., Computational studies of resonance wave pumping in compliant tubes, J Fluid Mech 608:139–160, 2008.
[19] Wen, C. Y., Chang, H. T., Design and Characterization of Valveless Impedance Pumps, J Mech 25(4):345–354, 2009.
[20] 林政偉,開迴路無閥幫浦之理論分析,國立成功大學機械所碩士論文,2009。
[21] Yang, T. S., Wang, C. C., Effects of actuator impact on the nonlinear dynamics of a valveless pumping system, Journal of mechanics in Medicine and Biology,DOI:10.1142/S0219519410003800,1-33,2010
[22] 王齊中,致動器衝擊對無閥幫浦系統非線性動態響應之影響,國立成功大學機械所博士論文,2011。
[23] Wang, C. C., Yang, T. S., Dynamical responses of a valveless fluid loop excited by the impact of a compression actuator, accepted to be published in J CSME,2010
[24] 王文憲,閉迴路無閥流體驅動系統,國立成功大學機械所碩士論文,2011。
[25] Manopoulos, C. G., Tsangaris, S., Modelling of the blood flow circulation in the human foetus by the end of the third week of gestation, Cardiovasc Eng 5:29–35, 2005.
[26] Mӓnner, J., Thrane, L., Noroz,i K., Yelbuz, T. M., In vivo imaging of the cyclic changes in crosssectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: A contribution to the understanding of the ontogenesis of cardiac pumping function, Dev Dynam 238:3273–3284, 2009.
[27] Mӓnner, J., How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube , Dev Dynam 239:1035–1046, 2010.
[28] Loumes, L., Multilayer impedance pump: a bio-inspired valveless pump with medical applications, Dissertation (Ph.D.), California Institute of Technology , 2007.
[29] Loumes, L., Avrahami, I., Gharib, M., Resonance pumping in a multilayer impedance pump,Phys Fluids 20:023103, 2008.
[30] Forster, F.K., Bardell, R.L., Afromowitz, M.A., Sharma, N.R. and Blanchard, A. Design,fabrication and testing of fixed-valve micro-pumps. pp. 39-44 (ASME, New York, NY,USA, San Francisco, CA, USA, 1995).
[31] Olsson, A., Enoksson, P., Stemme, G., Stemme, E. Micromachined flat-walled valveless diffuser pumps. Journal of Microelectromechanical Systems, 1997, 6(2),161-166.
[32] 楊政穎, 林俊達 , 李雨. A valve-less micro-pump based on asymmetric obstacles.第七屆奈米工程暨微系統技術研討會論文集台北,台灣,2003.
[33] Izzo, I., Accoto, D., Menciassi, A., Schmitt, L., Dario, P. Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves. Sensors and Actuators, A: Physical, 2007, 133(1), 128-140.
[34] http://www.youtube.com/watch?v=1xjyJp77FP8
[35] http://www.eecp.com.tw/index.html
[36] http://www.vasomedical.com/
[37] http://www.mitiheart.com/index.html
[38] http://en.wikipedia.org/wiki/Ventricular_assist_device