| 研究生: |
賴彥澄 Lai, Yen-Chen |
|---|---|
| 論文名稱: |
高效能訊號分解硬體設計 Efficient Hardware Implementations for Signal Decomposition |
| 指導教授: |
陳培殷
Chen, Pei-Yin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 經驗模態分解 、場效可程式邏輯閘陣列 、局域均值分解 、矽智財 |
| 外文關鍵詞: | empirical mode decomposition (EMD), field programmable gate array (FPGA), local mean decomposition (LMD), silicon intellectual property (SIP) |
| 相關次數: | 點閱:130 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經驗模態分解(empirical mode decomposition, EMD)和局域均值分解(local mean decomposition, LMD),是已被廣泛應用在分析非線性系統與非穩態訊號的高效能訊號分解方法。EMD和LMD的計算過程耗費大量運算,想透過軟體來實現高速的EMD或LMD運算是非常困難的。
在本論文中,我們提出了EMD和LMD的硬體設計與實現。我們首先提出了一個有彈性、低成本、高效能的EMD矽智財核心。這個矽智財核心可以達成眾多EMD應用所需的高速條件要求。在我們的設計裡,EMD矽智財的所有變數都已盡可能參數化。使用我們提出的EMD SIP Generator輔助系統,使用者可自行選取不同參數來讓各種不同的EMD應用使用,相對應的Verilog電路會根據使用者的選擇自動產生、並可以輕鬆整合進其他硬體系統裡。實驗結果顯示,我們所提出的EMD電路與既有的EMD設計相比,所需硬體成本較低、執行速度也較快。
接著,本論文也提出了一個高速LMD硬體架構。因為已良好的參數化,我們所提出的LMD電路可以輕鬆被整合進各種不同的LMD應用或硬體架構裡。使用者可自行挑選最適合他的應用的參數來使用。分解結果顯示,我們所提出的LMD設計不僅有彈性、成本低、速度快,在精確度表現上也很不錯。
本論文所有的硬體設計都使用Verilog硬體描述語言設計開發、都使用Synopsys公司的Design Compiler合成工具及TSMC的標準元件庫合成電路、並且都可以輕鬆整合進各種不同應用與硬體架構。依據合成結果,我們提出的設計在硬體成本與速度上皆具極佳的競爭力。
Empirical mode decomposition (EMD) and local mean decomposition (LMD) are effective signal decomposition methods widely used for analyzing nonlinear systems and nonstationary signals. The sifting processes of EMD and LMD require intensive computations. Achieving high-speed EMD or LMD calculations by using software solutions are difficult.
In this dissertation, the hardware implementations of EMD and LMD are pre-sented. First, a flexible, low-cost, and high-performance silicon intellectual prop-erty (SIP) core for EMD is proposed to meet the high-speed requirements of vari-ous EMD applications. Variables in the proposed EMD SIP are parameterized as much as possible. By using the proposed auxiliary software system, the EMD SIP Generator, users can choose various parameters for different EMD applications. The corresponding Verilog code will be automatically generated according to a user’s settings and can be easily embedded into other hardware systems. Experi-mental results show that the proposed EMD circuit requires lower hardware cost and achieves higher working speed as compared with previous EMD designs.
Second, a high-speed hardware architecture for LMD is proposed in this dis-sertation. With the help of parameterization, the proposed LMD circuit can be eas-ily used for various applications and hardware architectures. Users can choose the most closely coincident result for various LMD applications. The decomposition results show that the proposed designs are not only flexible, fast, and low-cost, but also have satisfactory precision.
All proposed circuits were developed using Verilog and then synthesized us-ing the Synopsys Design Compiler with the Taiwan Semiconductor Manufacturing Company (TSMC) cell libraries, and these circuits can be easily used for various applications and hardware architectures. The synthesis results demonstrate that the proposed designs have the advantages of low-cost and high-performance.
[1] N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., vol. 454, no. 1971, pp. 903–995, 1998.
[2] J. A. Rosero, L. Romeral, J. A. Ortega, and E. Rosero, “Short-circuit detection by means of empirical mode decomposition and Wigner–Ville distribution for PMSM running under dynamic condition,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4534–4547, Nov. 2009.
[3] D. He, R. Li, and J. Zhu, “Plastic bearing fault diagnosis based on a twostep data mining approach,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3429–3440, Aug. 2013.
[4] B. Biswal, M. Biswal, S. Mishra, and R. Jalaja, “Automatic classification of power quality events using balanced neural tree,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 521–530, Jan. 2014.
[5] G. Georgoulas et al., “Automatic pattern identification based on the complex empirical mode decomposition of the startup current for the diagnosis of rotor asymmetries in asynchronous machines,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4937–4946, Sep. 2014.
[6] J. S. Smith. “The local mean decomposition and its application to EEG perception data,” J. R. Soc. Inter., vol. 2, no. 5, pp. 443–454, Dec. 2005.
[7] L. Wang, M. I. Vai, P. U. Mak, and C. I. Ieong, “Hardware-accelerated implementation of EMD,” in Proc. 3rd Int. Conf. Biomed. Eng. Informat., Oct. 2010, vol. 2, pp. 912–915.
[8] M. H. Lee, K. K. Shyu, P. L. Lee, C. M. Huang, and Y. J. Chiu, “Hardware implementation of EMD using DSP and FPGA for online signal processing,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2473–2481, 2011.
[9] S. Cagdas and A. Celebi, “FPGA implementation of cubic spline interpolation method for empirical mode decomposition,” in Proc. IEEE Signal Process. Commun. Appl. Conf., Apr. 2012, pp. 1–4.
[10] Y. Y. Hong and Y. Q. Bao, “FPGA implementation for real-time empirical mode decomposition,” IEEE Trans. Instrum. Meas., vol. 61, no. 12, pp. 3175–3184, Dec. 2012.
[11] N. F. Chang, T. C. Chen, C. Y. Chiang, and L. G. Chen, “On-line empirical mode decomposition biomedical microprocessor for Hilbert Huang transform,” in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS’11), 2011, pp. 420–423.
[12] W. C. Shen, H. I Jen, and A. Y. Wu, “New ping-pong scheduling for lowlatency EMD engine design in Hilbert–Huang transform,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 8, pp. 532–536, Aug. 2013.
[13] R. Faltermeier, A. Zeiler, I. R. Keck, A. M. Tome, A. Brawanski, and E. W. Lang, “Sliding empirical mode decomposition,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN’10), 2010, pp. 1–8.
[14] S. Shukla, S. Mishra, and B. Singh, “Power quality event classification under noisy conditions using EMD-based de-noising techniques,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1044–1054, May 2014.
[15] J. Faiz, V. Ghorbanian, and B. M. Ebrahimi, “EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 957–966, May 2014.
[16] B. Yuan, Z. P. Chen, and S. Y. Xu “Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1285–1298, Feb. 2014.
[17] H. C. Hsueh and S. Y. Chien, “On-line local mean decomposition and its applica-tion to ECG signal denoising,” in Proc. IEEE Biomed. Circuits Syst. Conf. (Bio-CAS’14), 2014, pp.17–20.
[18] W. Li and H. Z. Yang, “Blind source separation in underdetermined model based on local mean decomposition and AMUSE algorithm,” in Proc. Chin. Control Conf. (CCC’14), 2014, pp.7206–7211.
[19] Y. Guo, G. R. Naik, and N. Y. Hung, “Single channel blind source separation based local mean decomposition for Biomedical applications,” in Proc. IEEE Int. conf. Eng. Med. Biol. Soc. (EMBC’13), 2013, pp. 6812–6815.
[20] J. Y. Wang and Z. X. Liu, “A self-adaptive analysis method of fault diagnosis in roller bearing based on Local mean decomposition,” in Proc. Chin. Control Decis. Conf. (CCDC’14), 2014, pp. 218–222.
[21] Y. X. Bu, J. D. Wu, J. Ma, X. D. Wang, and Y. G. Fan, “The rolling bearing fault diagnosis based on LMD and LS-SVM,” in Proc. Chin. Control Decis. Conf. (CCDC’14), 2014, pp. 3797–3801.
[22] R. D. Chen, P. Y. Chen, and C. H. Yeh, “A low-power architecture for the design of a one-dimensional median filter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 3, pp. 266–270, Mar. 2015.
[23] S. Chen and H. Chang, “Fully pipelined low-cost and high-quality color demosa-icking VLSI design for real-time video applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 6, pp. 588–592, Jun. 2015.
[24] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg, “Hardware architecture for list successive cancellation decoding of polar codes,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 8, pp. 609–613, Aug. 2014.
[25] R. Rato, M. Ortigueira, and A. Batista, “On the HHT, its problems, and some solutions,” Mech. Syst. Signal Process., vol. 22, no. 6, pp. 1374–1394, 2008.
[26] L. Y. Lu, “Fast intrinsic mode decomposition of time series data with sawtooth transform,” arXiv:0710.3170, Nov. 2007 [Online]. Available: http://arxiv.org/abs/0710.3170.
[27] Z. Jiang, S. Miao, and P. Liu, “A modified empirical mode decomposition filtering-based adaptive phasor estimation algorithm for removal of exponentially decaying dc offset,” IEEE Trans. Power Del., vol. 29, no. 3, pp. 1326–1334, Jun. 2014.
[28] N. E. Huang et al., “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. Lond. A, vol. 459, pp. 2317–2345, 2003.
[29] C. Junsheng, Y. Dejie, and Y. Yu, “Research on the intrinsic mode function (IMF) criterion in EMD method,” Mech. Syst. Signal Process., vol. 20, no. 4, pp. 817–824, 2006.
[30] P. Ren et al., “Gait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decomposition,” IEEE Trans. Biomed. Eng., vol. 64, no. 1, pp. 52–60, Jan. 2017.
[31] A. Arasteh, M. H. Moradi, and A. Janghorbani, “A novel method based on empirical mode decomposition for p300-based detection of deception,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 11, pp. 2584–2593, Nov. 2016.
[32] D. Camarena-Martinez, M. Valtierra-Rodriguez, C. A. Perez-Ramirez, J. P. Amezquita-Sanchez, R. de Jesus Romero-Troncoso, and A. Garcia-Perez, “Novel downsampling empirical mode decomposition approach for power quality analysis," IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2369–2378, Apr. 2016.
[33] R. Valles-Novo, J. de Jesus Rangel-Magdaleno, J. M. Ramirez-Cortes, H. Peregrina-Barreto, and R. Morales-Caporal, “Empirical mode decomposition analysis for broken-bar detection on squirrel cage induction motors,” IEEE Trans. Instrum. Meas., vol. 64, no. 5, pp. 1118–1128, May 2015.
[34] K. F. He, Z. P. Zhou, C. Wang, and X. J. Li, “Arc signal analysis of square wave alternating current submerged arc welding using local mean decomposition,” J. Adv. Mech. Des. Syst. Manu., vol. 10, no. 9, pp. 1–12, Nov. 2016.
[35] N. Lei, Y. F. Tang, and Y. Lei, “A fault diagnosis approach of reciprocating compressor gas valve based on local mean decomposition and autoregressive-generalized autoregressive conditional heteroscedasticity model,” J. Vibroengineering, vol. 18, no. 2, pp. 838–848, Mar. 2016.
[36] Y. Wei, M. Q. Xu, Y. B. Li, and W. H. Huang, “Gearbox fault diagnosis based on local mean decomposition, permutation entropy and extreme learning machine,” J. Vibroengineering, vol. 18, no. 3, pp. 1459–1473, May 2016.