簡易檢索 / 詳目顯示

研究生: 張良宇
Chang, Liang-Yu
論文名稱: 資訊整合與長鞭效應對公司績效之影響
The Impact of Information Integration and Bullwhip Effect on Firm Performance
指導教授: 張心馨
Chang, Hsin-Hsin
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 97
中文關鍵詞: 資訊整合資訊分享通路整合長鞭效應
外文關鍵詞: channel collaboration, information sharing, bullwhip effect, information integration
相關次數: 點閱:153下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   幾十年來,製造業廠商運用多種資訊科技來改善公司績效。這些資訊系統不僅促進資訊在供應鏈夥伴間流通,也協助廠商完成存貨管理與物流規劃。特別的是,資訊系統強化了合作策略的發展,並且透過供應鏈的整合降低需求資訊傳遞的扭曲。本研究主要探討企業如何透過資訊整合降低長鞭效應的衝擊,並且進一步證明長鞭效應對公司績效的負面影響。資訊分享、通路整合、長鞭效應與公司績效為本研究的四個分析構面。我們首先發展研究架構並探討研究構面間之關聯性,接著利用個案研究比較企業實務與學術理論的差異。從文獻回顧和個案研究的結果,我們設計出正式問卷來進行後續量化的分析。研究結果發現資訊分享對於通路整合與公司績效有正面的影響,企業可以透過降低長鞭效應來改善經營績效。最後我們提出本研究的發現,探討不同的設定對於供應鏈合作是否有效益上的影響。

      Over the past decade, manufacturing firms have implemented multiple types of information technology to improve their performance. These information systems fa-cilitate the information flow among supply chain members and contribute to inventory management and logistics planning. Specifically, these systems support coordination strategies aimed at strengthening inter-organizational cooperation and reducing distor-tions in the exchange of demand information. This research investigates how informa-tion integration assists enterprises to counter the bullwhip effect and further verify the damaging influence that bullwhip effect could have on a firm’s performance. Informa-tion sharing, channel collaboration, bullwhip effect, and firm performance are four research constructs analyzed in our study. We initially develop a research framework and describe the relationships between the research constructs. An in-depth case stud-ies method is then used to explore the differences between theory and practice. From a review of the literature and the case study results, we evolve a formal questionnaire which is then used for quantitative analysis. The results are consistent with a positive impact of information sharing on channel collaboration and the improvement in com-pany performance by diminishing the negative impact of the bullwhip effect. Finally, we draw on the findings of this study to discuss different supply chain settings which would influence the effectiveness of supply chain collaboration.

    TABLE OF CONTENTS LIST OF TABLES-------------------------------------------------------------VI LIST OF FIGURES-----------------------------------------------------------VII Chapter 1 Introduction------------------------------------------------------1 1.1. Research Background and Motivation-------------------------------------1 1.2. Major Objective of the Study-------------------------------------------3 1.3. Organization of Thesis-------------------------------------------------4 Chapter 2 Literature Review and Research Hypotheses-------------------------5 2.1. Information Sharing and Firm Performance-------------------------------5 2.2. Information Sharing and Channel Collaboration--------------------------9 2.3. Information Sharing and Bullwhip Effect-------------------------------12 2.4. Channel Collaboration and Bullwhip Effect-----------------------------15 2.5. Bullwhip Effect and Performance---------------------------------------16 2.6. Summary of Research Hypotheses----------------------------------------17 Chapter 3 Research Constructs and Method-----------------------------------20 3.1. Research Constructs---------------------------------------------------20 3.1.1. Multiple Types of Information Sharing-------------------------------20 3.1.2. Channel Collaboration-----------------------------------------------21 3.1.3. Bullwhip Effect-----------------------------------------------------21 3.1.4. Firm Performance----------------------------------------------------22 3.2. Research Method-------------------------------------------------------24 3.2.1. Research Samples----------------------------------------------------24 3.2.2. Case Study----------------------------------------------------------24 3.2.3. Questionnaire Development-------------------------------------------26 3.2.4. Data Analysis-------------------------------------------------------26 Chapter 4 Case Study-------------------------------------------------------30 4.1. Johnson & Johnson Vision Care-----------------------------------------30 4.2. Unilever--------------------------------------------------------------33 4.3. P&G-------------------------------------------------------------------35 4.4. ASUS------------------------------------------------------------------37 4.5. Discussions of Case Study Findings------------------------------------40 4.6. Modified Research Framework-------------------------------------------46 Chapter 5 Results of Data Analysis-----------------------------------------48 5.1. Data Collection-------------------------------------------------------48 5.2. Confirmatory Factor Analysis Model (CFA) -----------------------------49 5.2.1. Reliability---------------------------------------------------------51 5.2.2. Convergent Validity-------------------------------------------------51 5.2.3. Discriminant Validity-----------------------------------------------51 5.3. Structural Equation Model---------------------------------------------59 Chapter 6 Conclusions and Discussions--------------------------------------62 6.1. Summary of Findings---------------------------------------------------62 6.2. Contribution to Research and Practice---------------------------------64 6.3. Limitation and Future Research----------------------------------------65 References-----------------------------------------------------------------67 Appendix A-----------------------------------------------------------------75 Appendix B-----------------------------------------------------------------81 Appendix C-----------------------------------------------------------------93

    References
    1. Akkermans, H., Bogerd, P. and Doremalen, J.V. 2004. “Travail, transparency and trust: A case study of computer-supported collaborative supply chain planning in high-tech electronics”. European Journal of Operational Research. 153(2). pp.445-456.
    2. Anderson, J.C., Gerbing, D.W. and Hunter, J.E. 1987. “On the assessment of unidimensional measurement: internal and external consistency and overall consistency criteria”. Journal of Marketing Research. 24(4). pp.432-437.
    3. Baganha, M. P. and Cohen, M.A. 1998. “The stabilizing effect of inventory in supply chains”. Operations Research. 46(3). pp.72-83.
    4. Blackburn, J.D. 1991. “The quick response movement in the apparel industry: a case study in time-compressing supply chain”. Time-based Competition: The Next Battleground in American Manufacturing. Irwin, Homewood, IL.
    5. Bollen, K.A. 1989. Structural equations with latent variables. Wiley, New York, NY.
    6. Cachon, G.P. and Fisher, M. 2000. “Supply chain inventory management and the value of shared information”. Management Science. 46(8). pp.1032-1048.
    7. Callioni, G. and Billington, C. 2001. “Effective collaboration”. OR-MS Today. 28. pp.34–39.
    8. Chen, S.Y. 2005. Multivariate Analysis. Hwa Tai Publishing, Taipei, Taiwan.
    9. Chen, F. 1998. “Echelon reorder points, installation reorder points, and the value of centralized demand information”. Management Science. 44(12). pp.221-234.
    10. Chen, F., Drezner, Z., Ryan, J.K. and Simchi-Levi, D. 2000. “Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead time, and information”. Management Science. 46(3). pp.436-443.
    11. Chatfield, D.C., Kim, J.G., Harrison, T.P. and Hayya, J.C. 2004. “The bullwhip effect-Impact of stochastic lead time, information quality, and information sharing: A simulation study”. Production and Operations Management. 13(4). pp.340-353.
    12. Chen, F., Federgruen, A. and Zheng, Y.S. 2001. “Coordination mechanisms for a distribution system with one supplier and multiple retailers”. Management Science. 47(5). pp.693-708.
    13. Cronbach, L.J. and Meehl, P.E. 1955. ”Construct validity in psychological test”. Psychological Bulletin. 52. pp.281-302
    14. Croson, R. and Donohue, K. 2003. “Impact of POS data sharing on supply chain management: An experimental study”. Production and Operations Management. 12(1). pp.1-11.
    15. Croson, R. and Donohue, K. 2006. “Behavioral causes of the bullwhip effect and the observed value of inventory information”. Management Science. 52(3). pp.323-336.
    16. Crum, C. and Palmatier, G.E. 2004. “Demand collaboration: What’s holding us back?” Supply Chain Management Review. 8(1). pp. 54-61.
    17. Dejonckheere, J., Disney, S.M., Lambrecht, M.R., and Towill, D.R. 2004. “The impact of information enrichment on the bullwhip effect in the supply chains: A control engineering perspective”. European Journal of Operational Research. 153(3). pp.727-750.
    18. Disney, S.M., Naim, M.M., and Porter, A. 2004. “Assessing the impact of e-business on supply chain dynamics”. Int. J. Production Economics. 89(2). pp.109-118.
    19. Disney, S.M. and Towill, D.R. 2003a. “The effect of vendor managed inventory (VMI) dynamics on the bullwhip effect in supply chains”. Int. J. Production Economics. 85(2). pp.199-215.
    20. Disney, S.M. and Towill, D.R. 2003b. “Vendor-managed inventory and bullwhip reduction in a two-level supply chain”. International Journal of Operations & Production Management. 23(5/6). pp.625-651.
    21. Donovan, R.M. 2002/2003. “Supply chain management: Cracking the bullwhip effect”. Material Handling Management. 57(10). pp.44-45.
    22. Eisenhardt, K.H. 1989. “Building theories from case study research”. Academy of Management Review. 14(4). pp.532-550.
    23. Fiala, P. 2005. “Information sharing in supply chains”. Omega. 33(5). pp.419-423.
    24. Finley, F. and Srikanth, S. 2005. “Seven imperatives for successful collaboration”. Supply Chain Management Review. 9(1). pp.30-37.
    25. Flynn, B.B., Sakakibara, S., Schroeder, R.G.., Bates, K.A. and Flynn, E.J. 1990. “Empirical research methods in operations management”. Journal of Operations Management. 9(2). pp.250-284.
    26. Fornell, C. and Larcker, D.F. 1981. “Evaluating structural equation models with unobservable variables and measurement error”. Journal of Marketing Research. 18(1). pp.39-50.
    27. Forrester, J.W., 1961. Industrial dynamics. MIT Press, Cambridge, MA.
    28. Fransoo, J.C. and Wouters, M.J.F. 2000. “Measuring the bullwhip effect in the supply chain”. Supply Chain Management: An International Journal. 5(2). pp.78-89.
    29. Gavirneni, S. 2002. “Information flows in capacitated supply chains with fixed ordering costs”. Management Science. 48(5). pp.644-651.
    30. Gavirneni, S., Kapuscinski, R. and Tayur, S. 1999. “Value of information in capacitated supply chains”. Management Science. 45(1). pp.16-24.
    31. Gilbert, K. 2005. “An ARIMA supply chain model”. Management Science. 51(2). pp.305-310.
    32. Hair, J.F. 1998. Multivariate data analysis. Prentice-Hall, Upper Saddle River, N.J.
    33. Holweg, M., Disney, S., Holmstrom, J. and Smaros, J. 2005. “Supply chain collaboration: Making sense of the strategy continuum”. European Management Journal. 23(2). pp. 170-181.
    34. Houlihan, J.B. 1987. “International supply chain management”. International Journal of Physical Distribution and Material Management. 17(2). pp.51-66.
    35. Hu, L.T. and Bentler, P.M. 1999. “Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives”. Structured Equation Modeling. 6(1). pp. 1–55.
    36. Iyer, A.V. and Ye, J. 2000. “Assessing the value of information sharing in a promotional retail environment”. Manufacturing & Service Operations Management. 2(2). pp.128-143.
    37. Jarvenpaa, S.L., Tractinsky, N., and Vitale M. 2000. “Consumer trust in an internet store”. Information Technology and Management. 1(1–2). pp. 45–71.
    38. Joreskog, K.G. and Sorbom, D. 1989. LISREL 7 user's reference guide. Mooresville, IN: Scientific Software, Inc.
    39. Kaynak, H. 2002. “The relationship between just-in-time purchasing techniques and firm performance”. IEEE Transaction on Engineering Management. 49(3). pp.205-217.
    40. Kelle, P. and Akbulut, A. 2005. “The role of ERP tools in supply chain information sharing, cooperation, and cost optimization”. Int. J. Production Economics. 93-94. pp.41-52.
    41. Kelle, P. and Milne, A. 1999. “The effect of (s, S) ordering policy on the supply chain”. Int. J. Production Economics. 59(1-3). pp.113-122.
    42. Kleijnen, J.P. and Smits, M.T. 2003. “Performance metrics in supply chain management”. Journal of Operational Research Society. 54(5). pp.507-514.
    43. Kok, T.D., Janssen, F., Doremalen, J.V., Wachem, E.V. 2005. “Philips electronics synchronizes its supply chain to end the bullwhip effect”. Interfaces. 35(1). pp.37-48.
    44. Kuk, G. 2004. “Effectiveness of vendor-managed inventory in the electronics industry: determinants and outcomes”. Information & Management. 41(5). pp.645-654.
    45. Kulp, S.C., Lee, H.L. and Ofek, E. 2004. “Manufacturer benefits from information integration with retail customers”. Management Science. 50(4). pp.431-444.
    46. LeBlanc, L.J. 2000. “EDI performance in the automotive supply chain”. Int. J. Technology Management. 20(3/4). pp.287-303.
    47. Lee, H.L., Padmanabhan, V. and Whang, S. 1997a. “The bullwhip effect in supply chains”. Sloan Management Review. 38(Spring). pp.93-102.
    48. Lee, H.L., Padmanabhan, V. and Whang, S. 1997b. “Information distortion in a supply chain: The bullwhip effect”. Management Science. 43(4). pp.546-558.
    49. Lee, H.L., Padmanabhan, V. and Whang, S. 2004. “Comments on ‘Information distortion in a supply chain: The bullwhip effect”. Management Science. 50(12). pp.1887-1893.
    50. Lee, H.L., So, K.C. and Tang, C.S. 2000. “The value of information sharing in a two-level supply chain”. Management Science. 46(5). pp.626-643.
    51. Lee, H.L. and Whang, S. 2000. “Information sharing in supply chain”. Int. J. Technology Management. 20(3/4). pp.373-387.
    52. Li, G.., Yan, H., Wang, S., and Xia, Y. 2005. “Comparative analysis on value of information sharing in supply chains”. Supply Chain Management. 10(1). pp.34-46.
    53. Lummus, R.R., Duclos, L.K., and Vokurca, R.J. 2003. “The impact of marketing initiatives on the supply chain”. Supply Chain Management. 8(3/4). pp.317-323.
    54. Machuca, A.D. and Barajas, R.P. 2004. “The impact if electronic data interchange on reducing bullwhip effect and supply chain inventory costs”. Transportation Research:Part E. 40(3). pp.209-228.
    55. Marsch, H.W. and Hocevar, D. 1985. “Application of confirmatory factor analysis of the study of self-concept: first and higher order factor models and their invariance across groups”. Psychological Bulletin. 97(3). pp.562-582.
    56. Metters, R. 1997. “Quantifying the bullwhip effect in supply chains”. Journal of Operations Management. 15(2). pp.89-100.
    57. Moinzadeh, K. 2002. “A multi-echelon inventory system with information exchange”. Management Science. 48(3). pp.414-426.
    58. Nunnally, J. 1978. Psychometric Theory. McGraw-Hill, New York, NY.
    59. Park, S. 2002. IT-enabled supply chain management: Impact of inter-organizational information systems on supply chain performance. Ph.D. State University of New York at Buffalo.
    60. Raghunathan, S. and Yeh, A.B. 2001. “Beyond EDI: Impact of continuous replenishment program (CRP) between a manufacturer and its retailers”. Information System Research. 12(4). pp.406-419.
    61. Reddy, R. 2001. “Taming the bullwhip effect”. Intelligent Enterprise. 4(9). pp.59-60.
    62. Ruggles, K. 2005. “Technology and the service supply chain”. Supply Chain Management Review. 9(7). pp.12-13.
    63. Salmi, L. and Holmström, F. 2004. “Monitoring new product introductions with sell-through data from channel partner”. Supply Chain Management. 9(3). pp.209-212.
    64. Schwab, D.P. 1980. “Construct validity in organizational behavior”. Research in Organizational Behavior. 2. pp.3-43.
    65. Segars, A.H., Grover, V. 1993. “Re-examining perceived ease of use and usefulness: a confirmatory factor analysis”. MIS Quarterly. 17(4). pp.517–525.
    66. Sherman, R.J., 1998. “Collaborative planning, forecasting & replenishment (CPFR): Realizing the promise of efficient consumer response through collaborative technology”. Journal of Marketing Theory and Practice. 6(4). pp.6-9.
    67. Sterman, J.D., 1989. “Modeling managerial Behavior: Misperceptions of feedback in a dynamic decision making experiment”. Management Science. 35(3). pp.321-339.
    68. Stewart, G.T. and Mentzer, J.T. 2001. “The interaction between cooperative alliances and the bullwhip effect”. American Marketing Association. Conference Proceedings. 12. pp.424-425.
    69. Svesson, G.., 2003. “The bullwhip effect in intra-organizational echelons”. International Journal of Physical Distribution & Logistics Management. 33(1/2). pp.103-131.
    70. Taylor, D.H. 1999. “Measurement and analysis of demand amplification across the supply chain”. The International Journal of Logistics Management. 10(2). pp.55-70.
    71. Thonemann, U.W., 2002. “Improving supply-chain performance by sharing advance demand information”. European Journal of Operational Research. 142(1). pp.81-107.
    72. Warburton, R.D.H., 2004. “An analytical investigation of the bullwhip effect”. Production and Operations Management. 13(2). pp.150-160.
    73. Xu, K., Dong, Y., and Evers, P.T. 2001. “Towards better coordination of the supply chain”. Transportation Research:Part E. 37(1). pp.35-54.
    74. Yin, R.K. 2003. Case study research: Design and methods. 2nd edition. Sage Publications, California, CA.
    75. Yu, Z., Yan, H. and Cheng, T.C. 2001. “Benefits of information sharing with supply chain partnerships”. Industrial Management & Data Systems. 101(3/4). pp.114-119.
    76. Zhao, X., Xie, J. and Leung, J. 2002. “The impact of forecasting model selection on the value of information sharing in a supply chain”. European Journal of Operational Research. 142(2). pp.321-344.
    77. Zhao, X., Xie, J. and Zhang, W.J. 2002. “The impact of information sharing and ordering coordination on supply chain performance”. Supply Chain Management. 7(1). pp.24-40.

    下載圖示 校內:2008-07-12公開
    校外:2009-07-12公開
    QR CODE