| 研究生: |
陳韻文 Chen, Yun-Wen |
|---|---|
| 論文名稱: |
性別對於老化和發炎在小鼠中造成多巴胺神經退化的影響 Effect of gender on aging- and inflammation-associated dopaminergic neuron loss in the C57BL/6 mice |
| 指導教授: |
郭余民
Kuo, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 性別差異 、膠小細胞 、多巴胺神經元 、雌激素 |
| 外文關鍵詞: | gender differences, microglia, dopaminergic neuron, estrogen |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
巴金森氏症是由於中腦黑質區多巴胺神經元的退化,使動作功能逐漸喪失的神經退化性疾病,其致病機制到目前還不清楚。多巴胺神經元對微小膠細胞的活化具高敏感性,也就是小膠細胞活化後所釋放的發炎相關物質,對多巴胺神經元具有很高的毒性。因此中腦黑質區小膠細胞的活化,被認為是導致該區多巴胺神經元退化的原因之一。根據流行病學的統計,男性患有巴金森氏症的比例約是女性的兩倍。所以我們假設性別會影響老化或是發炎因子所引起的小膠細胞活化程度,進而導致不同程度的多巴胺神經死亡。為了驗證這個假設,我們以三、六、九、十二個月大的公鼠與母鼠為研究模式,以免疫組織化學染色法觀察黑質區中小膠細胞活化程度,和多巴胺神經元的數目。結果顯示,公鼠與母鼠的小膠細胞活化,和多巴胺神經元的數目,皆會受到老化的影響;但是對公鼠的影響明顯大於母鼠。以LPS誘發之小膠細胞活化與多巴胺神經元死亡之程度,也是公鼠比母鼠嚴重。我們接著假設此差異可能是因為卵巢分泌了一些因子,可以抗發炎和保護神經。因此,我們在母鼠兩個月大時進行卵巢切除,並在一個月後接受腹腔注射LPS。結果顯示,卵巢切除後的母鼠,小膠細胞活化與多巴胺神經元死亡之程度,明顯大於未切除卵巢之母鼠。我們進一步假設此保護是源自於卵巢所分泌的雌激素。因此,我們在中年母鼠卵巢切除後三個月內,給予為期一個月或三個月的雌激素補充。結果發現,雌激素會降低卵巢切除後,老化所導致之小膠細胞活化和多巴胺神經元死亡;而三個月的補充效果優於一個月。在細胞培養的實驗中,我們發現雌激素前處理30分鐘後,可以透過抑制Toll-like receptor 4 及其訊息傳遞路徑,有效抑制LPS所誘發之小膠細胞活化。總結本研究我們發現,雖然無論是公鼠或母鼠,老化皆會導致小膠細胞活化和多巴胺神經元數目下降,但是這個現象在母鼠比公鼠和緩。此性別差異與母鼠卵巢所分泌的雌激素抑制小膠細胞的活化有關。雌激素或可被用來延緩巴金森氏症的發生與病情之惡化。
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). The mechanisms responsible for the loss of DA neurons in PD are poorly understood. Because DA neurons are highly susceptible to microglial activation and pro-inflammatory cytotoxic factors, it has been suggested that microglia activation predisposes DA neuron degeneration. Epidemiological studies reveal that both incidence and prevalence of PD are 1.5–2 times higher in men than in women. Thus, we hypothesize that different sex has differential effects on aging and inflammation-induced microglia activation, which then cause different levels of DA neuron death. To test this hypothesis, brains of male and female mice at the ages of 3-, 6-, 9- and 12-month-old were harvested to investigate DA neuron loss and microglia activation in the SN. Our data showed that although the degrees of microglia activation and DA neuron loss in the SN were increased with age in both genders, these phenomena were more pronounced in the male mice. Furthermore, the degrees of microglia activation and DA neuron loss in the SN induced by peripheral LPS injection were more severe in the young male mice than that of young female mice. We then hypothesize that ovarian hormones are capable of affecting the activation of microglia and survival of DA neurons. To examine this hypothesis, female mice were subjected to bilateral ovariectomy (OVX) at two months of age followed by a LPS injection one month later. OVX eliminated the female-associated protection against LPS-induced microglia activation and DA neuron loss. Given mice that received OVX at 6-month-old with 17-β estradiol (E2) for 3 months (from 6 to 9 months of age) or 1 month (from 8 to 9 months of age), the microglia activation and DA neuron loss were partially inhibited with stronger effects evident in the 3 month supplement group. Furthermore, 30 min pre-exposure of BV2 cells, a macrophage/microglia cell line, with E2 effectively inhibited the LPS-induced microglia activation via the Toll-like receptor 4 signaling pathways. In conclusion, although DA neuron loss and microglia activation in the SN are evident in both male and female C57BL/6 mice during aging, these changes are less dramatic in the female mice. The E2-induced inhibition of microglia activation may partially explain this gender differences. E2 supplement may be used to delay the onset or slow down the development of PD.
1.Goetz, C.G., The history of Parkinson's disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med, 2011. 1(1): p. a008862.
2.John H. Morrison and Mark G. Baxter., The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci, 2012. 13(4): p. 240-50.
3.Dag Aarsland, C. G. Ballard, MRCPsych and Glenda Halliday., Are Parkinson's disease with dementia and dementia with Lewy bodies the same entity? J Geriatr Psychiatry Neurol, 2004. 17(3): p. 137-45.
4.Joshua M. Shulman, Philip L. De Jager and Mel B. Feany., Parkinson's disease: genetics and pathogenesis. Annu Rev Pathol, 2011. 6: p. 193-222.
5.Anthony H. Schapira, FMedSci and Peter Jenner., Etiology and pathogenesis of Parkinson's disease. Mov Disord, 2011. 26(6): p. 1049-55.
6.Olga Corti, Suzanne Lesage and Alexis Brice., Mechanisms of Parkinson's disease. Physiol Rev, 2011. 91: p. 1161-1218.
7.Zhen Hong, M.S., Kathryn A. Chung, Joseph F. Quinn, Elaine R. Peskind, Douglas Galasko, Joseph Jankovic, Cyrus P. Zabetian, James B. Leverenz, Geoffrey Baird, Thomas J. Montine, Aneeka M. Hancock, Hyejin Hwang, Catherine Pan, Joshua Bradner, Un J. Kang, Poul H. Jensen and Jing Zhang, DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain, 2010. 133(Pt 3): p. 713-26.
8.Pavan K. Auluck, Gabriela Caraveo and Susan Lindquist., alpha-Synuclein: membrane interactions and toxicity in Parkinson's disease. Annu Rev Cell Dev Biol, 2010. 26: p. 211-33.
9.Yasuomi Ouchi, M.F., Etsuji Yoshikawa,Toshihiko Kanno, Yoshimoto Sekine, Tomomi Ogusu and Tatsuo Torizuka, Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann Neurol, 2005. 57(2): p. 168-75.
10.Etienne C Hirsch and Stéphane Hunot., Neuroinflammation in Parkinson's disease. J Neuroimmune Pharmacol, 2009. 4(4): p. 419-29.
11.Joshua A. Smitha, A.D., Swapan K. Rayb and Naren L. Banika, Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull, 2012. 87(1): p. 10-20.
12.Manuel B. Graeber and Wolfgang J. Streit., Microglia: biology and pathology. Acta Neuropathol, 2010. 119(1): p. 89-105.
13.C.F. Orra, D.B. Roweb and G.M. Hallidaya., An inflammatory review of Parkinson’s disease. Progress in Neurobiology, 2002. 68: p. 325–340.
14.Etienne C. Hirsch, Ste´phane Hunot and Andreas Hartmann., Neuroinflammatory processes in Parkinson's disease. Parkinsonism Relat Disord, 2005. 11 Suppl 1: p. S9-S15.
15.KemalUgur Tufekci, Sermin Genc and Kursad Genc., The endotoxin-induced neuroinflammation model of Parkinson's disease. Parkinsons Dis, 2011. 2011(487450): p. 25.
16.Liya Qin, X.W., Michelle L. Block, Yuxin Liu, Georeg R. Breese, Jau-Shyong Hong, Darin J. Knapp and Fulton T., Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 2007. 55(5): p. 453-62.
17.Etienne C Hirsch and Stéphane Hunot., Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol, 2009. 8: p. 382-97.
18.Liya Qin, Y.L., Jau-Shyong Hong and Fulton T., NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia, 2013.
19.Liya Qin, Tongguang Wang, Sung-Jen Wei, Michelle L. Block, Belinda Wilson,Bin Liuand and Jau-Shyong Hong., NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem, 2004. 279(2): p. 1415-21.
20.Hui-Ming Gao, B.L., Wanqin Zhang and Jau-Shyong Hong, Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. The FASEB Journal, 2003.
21.Charlotte A Haaxma, B.R.B., George F Borm, Wim J G Oyen, Klaus L Leenders, Silvia Eshuis and Jan Booij, Gender differences in Parkinson's disease. J Neurol Neurosurg Psychiatry, 2012. 78(8): p. 819-824.
22.L.M.L. de Lau, P.C.L.M.G., M.C. de Rijk, A. Hofman, P.J. Koudstaal and M.M.B. Breteler, Incidence of parkinsonism and Parkinson disease in a general population:The Rotterdam Study. Neurology, 2004. 63: p. 1240-1244.
23.G F Wooten, L.J.C., V E Bovbjerg, J K Lee and J Patrie, Are men at greater risk for Parkinson's disease than women? Journal of Neurology, Neurosurgery & Psychiatry, 2004. 75(4): p. 637-639.
24.Ivy N. Miller, MA and Alice Cronin-Golomb., Gender differences in Parkinson's disease: clinical characteristics and cognition. Mov Disord, 2010. 25(16): p. 2695-703.
25.Shulman, L.M., Gender Differences in Parkinson's Disease. 2007.
26.Yuxin Liu, L.Q., Belinda Wilson, Xuefei Wua, Li Qian, Ann-Charlotte Granholmd, Fulton T. Crewsb and Jau-Shyong Honga, Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology, 2008. 29(5): p. 864-70.
27.Maurizio Cutolo, Alberto Sulli and Rainer H. Straub., Estrogen metabolism and autoimmunity. Autoimmun Rev, 2012. 11(6-7): p. A460-4.
28.Kompoliti, K., Estrogen and Parkinson's disease. Frontiers in Bioscience, 2003. 8: p. 391-400.
29.Jie Cui, Yong Shen and Rena Li., Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends in Molecular Medicine, 2013: p. 1-13.
30.Maria D. Benedetti, Demetrius M. Maraganore and James H. Bower., Hysterectomy, menopause, and estrogen use preceding Parkinson's disease: an exploratory case-control study. Mov Disord, 2001. 16(5): p. 830-7.
31.Richelin V. Dye, K.J.M., Elyse J. Singer and Andrew J. Levine, Hormone replacement therapy and risk for neurodegenerative diseases. Int J Alzheimers Dis, 2012. 2012: p. 258454.
32.J.M. Pavona, H.E. Whitson and M.S. Okund., Parkinson's disease in women: a call for improved clinical studies and for comparative effectiveness research. Maturitas, 2010. 65(4): p. 352-8.
33.Deane. E., Estrogen as a Neuroprotectant Against MPTP-Induced Neurotoxicity in C57/BL Mice. Neurotoxicology and Teratology., 1996. 18(5): p. 603-606.
34.Dluzen, D., Estrogen decreases corpus striatal neurotoxicity in response to 6-hydroxydopamine. Brain Research 1997. 767: p. 340-344.
35.Wanida Tripanichkula, Kittisak Sripanichkulchaib and David I. Finkelsteinc., Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Brain Res, 2006. 1084(1): p. 28-37.
36.Silvia Tapia-Gonzalez, P.C., Olga Pernia, Luis M Garcia-Segura and Yolanda Diz-Chaves, Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs. J Endocrinol, 2008. 198(1): p. 219-30.
37.Hideyuki Sawada, T.N., Masakazu Ibi, Rie Kanki, Takeshi Kihara, Miki Nakanishi, and N.S. Shun Shimohama, Kazuhiro Honda and Akinori Akaike Estradiol protects dopaminergic neurons in a MPP+ Parkinson's disease model. Neuropharmacology, 2002. 42: p. 1056–1064.
38.Kui Xu,Yuehang Xu and Deborah Brown-Jermyn., Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neurosci, 2006. 26(2): p. 535-41.
39.Xuan Liu, X.-L.F., Yan Zhao, Guang-Rui Luo, Xu-Ping Li and Rui Li, Estrogen provides neuroprotection against activated microglia-induced dopaminergic neuronal injury through both estrogen receptor-alpha and estrogen receptor-beta in microglia. J Neurosci Res, 2005. 81(5): p. 653-65.
40.Csaba Leranth, Robert H. Roth and D. Eugene Redmond., Estrogen Is Essential for Maintaining Nigrostriatal Dopamine Neurons in Primates: Implications for Parkinson’s Disease and Memory. The Journal of Neuroscience, 2000. 20(23): p. 8604–8609.
41.Anne Baker, Vielska M. Brautigam And Jyotij Watters., Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor beta. Endocrinology, 2004. 145(11): p. 5021-5032.
42.E. Vegeto and G. Pollio., Estrogen blocks inducible nitric oxide synthase accumulation in LPS-activated microglia cells. Experimental Gerontology, 2000. 35: p. 1039-1316.
43.Satoko Nishimoto and Eisuke Nishida., MAPK signalling: ERK5 versus ERK1/2. EMBO Rep, 2006. 7(8): p. 782-6.
44.Kaminska, B., MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta, 2005. 1754(1-2): p. 253-62.
45.Philippe P. Roux and John Blenis., ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 2004. 68(2): p. 320-44.
46.Olumayokun A.Olajide, H.S.B., Antonio C. P. de Oliveira and Bernd L. Fiebich, Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine. Evid Based Complement Alternat Med, 2013. 2013: p. 459723.
47.Bernd L. Fiebich, K.L., Stefanie Engels and Michael Heinrich Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells. Journal of Neuroimmunology, 2002. 132: p. 18-24.
48.Park, S.E.S., K. Kim, S. Kim and H. Kim, S. J., Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol, 2011. 164(3): p. 1008-25.
49.Arthur K. C. and Darrold L.., Determining the stage of the estrous cycle in the mouse by the appearance of the vagina. Biology of reproduction, 1973. 8: p. 491-494.
50.Valeria Benedusi, C.M., Sara Della Torre, Giuseppina Monteleone, Elisabetta Vegeto and Adriana Maggi, A lack of ovarian function increases neuroinflammation in aged mice. Endocrinology, 2012. 153(6): p. 2777-88.
51.Liya Qin, M.L.B., Yuxin Liu, Rachelle J. Bienstock, Zhong Pei, Wei Zhang, Xuefei Wu, Belinda Wilson, Tom Burka and Jau-Shyong Hong, Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J, 2005. 19(6): p. 550-7.
52.Shuyan Wang, P.R., Xiaobo Li, Yunqian Guan and Yu Alex Zhang, 17beta-estradiol protects dopaminergic neurons in organotypic slice of mesencephalon by MAPK-mediated activation of anti-apoptosis gene Bcl2. J Mol Neurosci, 2011. 45(2): p. 236-45.
53.Mona Bains, Joanne C. Cousins and James L. Roberts., Neuroprotection by estrogen against MPP+-induced dopamine neuron death is mediated by ERalpha in primary cultures of mouse mesencephalon. Exp Neurol, 2007. 204(2): p. 767-76.
54.Murray, H.E., Dose- and sex-dependent effects of the neurotoxin 6-hydroxydopamine on the nigrostriatal dopaminergic pathway of adult rats. Neuroscience, 2003. 116: p. 213–222.
55.Kaoru Saijo, J.G.C., Andrew C. Li, John A. Katzenellenbogen and Christopher K. Glass1, An ADIOL-ERbeta-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell, 2011. 145(4): p. 584-95.
校內:2018-07-29公開