| 研究生: |
蕭輔沛 Hsiao, Fu-Pei |
|---|---|
| 論文名稱: |
鋼筋混凝土剪力牆-構架互制行為之實驗研究與數值模擬 Experimental and Numerical Studies on Reinforced Concrete Framed Shear Walls |
| 指導教授: |
邱耀正
Chiou, Yaw-Jeng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 有限元素分析 、大尺寸試驗 、含構架剪力牆 、鋼筋混凝土 |
| 外文關鍵詞: | large-scale experiments, framed-shear wall, reinforced concrete, finite element analysis |
| 相關次數: | 點閱:128 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
九二一集集地震帶來國內重大浩劫,造成眾多的校舍與民間建築破壞、崩塌,並造成大量民眾傷亡,這些死亡與重傷人員大多被房屋壓死與壓傷。含有剪力牆之樓房經調查顯出良好的抗震特性,其結構可能破裂而達到某種程度之破壞,但卻沒有樓房完全倒塌之現象,可說是樓房最佳之抗震結構。而剪力牆在施工上泰半與RC構架共構,因此鋼筋混凝土剪力牆-構架互制之結構行為對耐震設計而言,為不容忽視之重要參數。
以往的鋼筋混凝土剪力牆-構架互制實驗多半為縮尺寸之試體,由於受到尺寸效應影響,縮尺寸試體之實驗結果可能遺漏一些關鍵之結構行為。要實際明瞭鋼筋混凝土剪力牆-構架互制之結構行為,惟有透過大尺寸試驗的方式,才能避免尺寸效應的影響。本文除針對傳統含邊柱剪力牆試體進行試驗,並變換試體之牆體配筋形式以進行改良型試體試驗,尋求在高結構強度下具有更佳結構韌性之鋼筋混凝土含邊柱剪力牆試體。
本文旨在應用大尺寸結構實驗及數值模擬探討各種形式之鋼筋混凝土剪力牆-構架互制行為。文中試體包括含邊柱高型、中型、低型剪力牆,以及含矮牆構架、含高牆構架、含牆開門構架、含翼牆構架、含槽縫牆構架、純構架與純牆板等傳統配筋試體,另外還有45°斜向配筋剪力牆等改良型試體,共計完成27個大尺寸試體試驗。以側向反覆載重加載至破壞之實驗結果配合OpenSees (Open System for Earthquake Engineering Simulation)有限元素分析,探討鋼筋混凝土含牆構架之開裂載重、降伏載重、極限載重與結構韌性。俟試體試驗破壞後,本文將試驗過後之試體視其損害情形及破壞模式施以不同方式之修復或補強,再進行試驗,以研究各種修復與補強方法對於震害後含邊柱剪力牆結構強度與韌性之提升。
由本文之實驗結果顯示,混凝土強度影響結構之開裂載重、降伏載重以及極限載重;含牆構架之開裂載重、降伏載重以及極限載重皆高於純構架;增加剪力牆之垂直向鋼筋比可以大幅提升結構之強度與韌性,其效果比提升混凝土強度的效應明顯;高型剪力牆趨向撓曲破壞,其結構韌性與允許側向位移皆大於低型剪力牆;中型剪力牆趨向撓曲-剪力混合型破壞;槽縫牆若配合適當的鋼筋比與槽縫數,可在小幅降低結構強度的情況下,提升含牆構架的結構韌性。本文試驗不同形式的含開口牆構架與含邊柱剪力牆的補強措施,包括了低壓注射環氧樹脂修復、增設翼牆補強、圍封鋼板補強與增設鋼片斜撐框架補強,可供地震後結構體補強的參考。並且由傳統配筋試體與改良型試體的比較中可發現,由於斜向45°配筋剪力牆把牆體鋼筋配置在與試體主應力接近平行的方向上,使得載重-位移曲線中的擠壓效應(pinching effect)明顯比傳統配筋剪力牆減少許多,試體的結構行為呈現近似韌性破壞的趨勢,由實驗結果可以看出其強度不僅比傳統試體高,且其載重-位移曲線的飽滿度亦是優於傳統配筋剪力牆。
The Chi-Chi earthquake in Taiwan (September 21, 1999) induced severe damage of school buildings. The investigations on the failure of buildings show that these damage buildings are mainly caused by shear failure of short column, insufficient walls, and too small column cross-section. RC shear wall has been widely used as an efficient earthquake resistant structure. Its structural analysis and test have been studied by many researchers. The adoption of RC shear walls for buildings sounds valuable earthquake resistant structures.
Shear walls have been recognized as efficient earthquake resistance elements. Framed shear walls are extensively used as the components of earthquake resistance buildings. However, the conventional shear walls, which the reinforcements are in vertical and horizontal directions, frequently possess pinching effect in the load-displacement curves. The improvement of conventional shear wall to reduce the pinching effect sounds an essential research.
The structural behavior of reinforced concrete framed shear walls were studied by the large-scale tests. Twenty-seven specimens subjected to reversed cyclic lateral loading have been tested, and the OpenSees (Open System for Earthquake Engineering Simulation) finite element model is adopted to analyze the experimental results. These specimens include framed shear walls with opening, high-, middle-, low-rise framed shear walls, pure frames, pure walls, and high seismic performance framed walls. The parameters of steel ratio and layout of reinforcement of walls were investigated by the high seismic performance framed walls. The reinforcements of high seismic performance walls were designed with 45° reinforcements, 45° and boundary vertical reinforcements, and hybrid conventional and 45° reinforcements.
The seismic performance of repaired reinforced concrete framed shear walls with opening is quantitatively investigated in this study. Ten large-scale repaired framed wall specimens subjected to reversed cyclic lateral loading had been tested. According to the failure mechanism of the prototype specimens, three specimens were repaired with epoxy and the other specimens were repaired by various methods, such as enlargement of the column size, addition of wing walls adjacent to the boundary columns, jacket addition to the joints of beam-column, and use of steel bracings on the wall.
The experimental results showed that the failure of high-rise shear walls is flexural; their ductility factors are greater than those of low-rise shear walls; their displacements are also greater. The middle-rise shear walls failed by a combination of both flexure and shear. The experimental results also show that the crack load, yield load, and limit load are superior for specimens with higher concrete strength and frame with wall. The numerical solutions agree well with the experimental results.
The results show that the pinching effect, which frequently existed in the conventional shear walls, is remarkably improved in the new design high seismic performance walls. The larger steel ratio in the shear walls with 45° reinforcements induces less pinching effect. The structural behavior is highly dependent on the layout of reinforcements of walls. The new design shear wall possesses high potential to improve the seismic performance of buildings, and the proposed numerical model will be a fundamental of model-based simulation of concrete structures.
1.Adin, M. A., Yankelevsky, D. Z., Farhey, D. N., “Cyclic Behavior of Epoxy-Repaired Concrete Beam-Column Joints,” ACI Structural Journal, Vol. 90, pp. 170-179, 1993.
2.Alcocer, S. M., “RC Frame Connections Rehabilitated by Jacketing,” Journal of Structural Engineering, ASCE, Vol. 119, No. 5, pp. 1413-1431, 1993.
3.Barda, F., J.M. Hanson, and W.G. Corley, “Shear Strength of Low-Rise Walls with Boundary Elements,” R.C. Structure in Seismic Zones, American Concrete Institute, edited by N.M. Hawkins, 1977.
4.Basunbul, I. A., Gubati, A. A., Al-Sulaimani, G. J., Baluch, M. H., “Repaired Reinforced Concrete Beams,” ACI Materials Journal, Vol. 87, pp. 348-354, 1990.
5.Benjamin, Jack R., and Harry A. Williams, “The Behavior of One-Story Reinforced Shear Wall,” Journal of the Structural Division, ASCE, May, pp. 1- 49, 1957.
6.Bracci, J. M., Kunnath, S. K., Reinhorn, A. M., “Seismic Performance and Retrofit Evaluation of Reinforced Concrete Structures,” Journal of Structural Engineering, ASCE, Vol. 123, No. 1, pp. 3-10, 1997.
7.Capuani, D., M. Merli and M. Savoia, “Dynamic Analysis of Coupled Shear Wall-Frame Systems,” Journal of Sound and Vibration, Vol. 192, No. 4, pp. 867-883, 1996.
8.Cheong, H. K., MacAlevey, N., “Experimental Behavior Jacketed Reinforced Concrete Beams,” Journal of Structural Engineering, ASCE, Vol. 126, pp. 692-699, 2000.
9.Chesi, C. and W. C. Schnobrich, “Three-Dimensional Effects in Lateral Behavior of Frame-Wall Systems,” Journal of the Structural Engineering, ASCE, Vol. 117, No. 2, pp. 391-409, 1991.
10.Fenves, G. L., McKenna, F., Scott, M. H., and et al., OpenSees User and Developer Workshop, Workshop Handout, Pacific Earthquake Engineering Research Developer Center, University of California, Berkeley, CA, August 20-23, 2001.
11.Fintel, M., “Shear wall—An Answer for Seismic Resistance,” Concrete International, July, pp.48-53, 1991.
12.Ghobarah, A., El-Attar, M., Aly, N.M., “Evaluation of Retrofit Strategies for Reinforced Concrete Columns: A Case Study,” Engineering Structures, Vol. 22, No. 5, pp. 490-501, 2000.
13.Hsu, T. T. C., and Mo, Y. L., “Softening of Concrete in Low-rise Shear Walls,” ACI Structural Journal, Vol. 82, No. 3, pp. 883-889, 1985.
14.Hsu, T. T. C., “Concrete stiffness matrices for membrane elements,” Structural Engineering and Mechanics, Vol. 5, No. 5, pp. 599-608, 1997.
15.Hsu, T. T. C. and Zhu, R. R. H., “Softened Membrane Model for Reinforced Concrete Elements in Shear,” Structural Journal of the American Concrete Institute, Vol. 99, No. 4, July-August, pp. 460-469, 2002.
16.Jara, M., Hernandez, C., Garcia, R., Robles, F., “Typical Cases of Repair and Strengthening of Concrete Buildings,” Earthquake Spectra, Vol. 5, No. 1, pp. 175-193, 1989.
17.Karsan, I. D. and Jirsa, J. O. “Behavior of Concrete under Compressive Loadings,” Journal of the Structural Division, ASCE, Vol. 95(ST12), pp. 2543-2563, 1969.
18.Kayal, S. “Nonlinear Interaction of RC Frame-Wall Structures,” Journal of Structural Engineering, ASCE, Vol. 112, No. 5, pp. 1021-1035, 1986.
19.Mansour, M., Lee, J. Y. and Hsu, T. T. C. “Cyclic Stress-Strain Curves of Concrete and Steel Bars in Membrane Elements,” Journal of the Structural Division, ASCE, Vol. 127, No. 12, Dec, pp. 1402-1411, 2001.
20.Mansour, M. and Hsu, T. T. C., "Behavior of Reinforced Concrete Elements Under Cyclic Shear: Part I - Experiments," Journal of Structural Engineering, ASCE, accepted for publication in 2003.
21.Mau, S. T. and Thomas T. C. Hsu, “Shear Design and Analysis of Low-rise Structural Walls,” ACI Structural Journal, Vol. 83, No. 2, pp. 306-315, 1986.
22.Mau, S. T. and Thomas T. C. Hsu, “Shear Behavior of Reinforced Concrete Framed Wall Panels with Verical Load,” ACI Structural Journal, Vol. 84, No.2, pp. 228-234, 1987.
23.Mo, Y. L., “Analysis and Design of Low-rise Structural Walls under Dynamically Applied Shear Forces,” ACI Structural Journal, Vol. 85, No.2, pp. 180-189, 1988.
24.Mo, Y. L. and C. J. Kuo, “Structural Behavior of Reinforced Concrete Frame-Wall Components,” Materials and Structures, Vol. 31, pp. 609-615, 1998.
25.Sheikh, S. A. and Uzumeri, S. M. “Analytical Model for concrete confinement in Tied Columns,” Journal of the Structural Division, ASCE, Vol. 108, No. 12, pp. 2703-2722, 1982.
26.Taghdi, M., Bruneau, M., Saatcioglu, M., “Seismic Retrofitting of Low-Rise Masonry and Concrete Walls Using Steel Strips,” Journal of Structural Engineering, ASCE, Vol. 126, pp. 1017-1025, 2000.
27.Tasai, A., Yamada, T., Otani, S., Aoyama, H., “Performance of Reinforced Concrete Flexural Members After Repair,” Transactions of the Japan Concrete Institute, Vol. 7, pp. 591-598, 1985.
28.Valluvan, R., Kreger, M. E., Jirsa, J. O., “Strengthening of Column Splices for Seismic Retrofit on Nonductile Reinforced Concrete Frames,” ACI Structural Journal, Vol. 90, No. 4, pp. 432-433, 1993.
29.Vecchio, V. J. and M. P. Collins, “The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal, March-April, pp. 219-231, 1986.
30.Vecchio, V. J., “Nonlinear Finite Element Analysis of Reinforced Concrete Membranes,” ACI Structural Journal, Vol. 96, No. 1, pp. 26-35, 1989.
31.Vecchio, V. J., “Reinforced Concrete Membrane Element Formulation,” Journal of the Structural Engineering, ASCE, Vol. 116, No. 3, pp. 730-750, 1990.
32.Vecchio, V. J. and M. P. Collins, “Compression Response of Cracked Reinforced Concrete,” Journal of the Structural Engineering, ASCE, Vol. 119, No. 12, pp. 99-107, 1993.
33.Wood, S. L., “Shear Strength of Low-rise Reinforced Concrete Walls,” ACI Structural Journal, Vol. 87, No. 1, pp. 99-107, 1990.
34.Yamada, M., H. Kawamura, and K. Katagihara, “Reinforced Concrete Shear Walls Without Openings Test and Analysis,” Shear in Reinforced Concreted, Vols. 1&2, American Concrete Institute, (SP-42), pp.539-558, 1974.
35.Zhu, R. H., Hsu, T. T. C. and Lee, J. Y., “Rational Shear Modulus for Smeared Crack Analysis of Reinforced Concrete,” Structural Journal of the American Concrete Institute, Vol. 98, No. 4, July-Aug, pp. 443-450, 2001.
36.Zhu, R. R. H. and Hsu, T. T. C., “Poisson Effect of Reinforced Concrete Membrane Elements,” Structural Journal of the American Concrete Institute, Vol. 99, No. 5, Sept-Oct, pp. 631-640, 2002.
37.郭雄銘,“鋼筋混凝土低型剪力牆承受反向重覆載重之行為研究”,國立成功大學建築研究所碩士論文,許茂雄教授指導,(1986)。
38.羅必達,“低型鋼筋混凝土剪力牆承受反向重覆載重之剛度變化及耐震診斷”,國立成功大學建築研究所碩士論文,許茂雄教授指導,(1988)。
39.陳亦信,“低型鋼筋混凝土槽縫剪力牆承受反向重覆載重之行為研究”,國立成功大學建築研究所碩士論文,許茂雄教授指導,(1988)。
40.郭建仁,“構件-剪力牆之結構互制”,國立成功大學土木研究所碩士論文,莫詒隆教授指導,(1997)。
41.國家地震工程研究中心,1999年9月21日台灣中部集集地震初步勘災報告(二),報告編號:NCREE-99-031,(1999)。
42.陳力平,“含開口RC牆非韌性構架之耐震行為研究”,國立台灣科技大學營建研究所碩士論文,黃世建教授指導,(2002)。
43.陳俊宏,“含開口RC牆非韌性構架之耐震抗剪強度研究”,國立台灣科技大學營建研究所碩士論文,黃世建教授指導,(2002)。
44.張弘彬,“含RC翼牆非韌性構架耐震評估與補強之研究”,國立台灣科技大學營建研究所碩士論文,黃世建教授指導,(2002)。