簡易檢索 / 詳目顯示

研究生: 陳奕
Chen, Yi
論文名稱: 企業導入生成式AI因素之研究
A Study on Factors Influencing Enterprise Adoption of Generative AI
指導教授: 侯建任
Hou, Jian-Ren
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 65
中文關鍵詞: 生成式人工智慧資訊系統成功模式系統品質資訊品質信任
外文關鍵詞: Generative Artificial Intelligence, Information Systems Success Model, System Quality, Information Quality, Trust
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從OpenAI推出GPT(Generative Pre-trained Transformer)系列模型以來,生成式AI在全球範圍內引起了廣泛關注,這項技術是人工智慧發展的一個重要突破,能夠自動生成如文字、圖像、音樂等多樣化內容。隨著技術的快速發展,生成式 AI 的應用場景逐漸擴展至各行各業。然而,企業在導入此新技術的過程中,可能會受遇到許多影響因素與挑戰。

    本研究以資訊系統成功模式為理論基礎,探討系統品質、資訊品質、服務品質、使用者滿意度、再次使用意圖等構面對生成式 AI 導入過程的影響,並特別加入信任作為新增構面,討論其與另外五個構面之間的交互作用。本研究採用問卷調查的方法,透過蒐集大眾對生成式AI的使用經驗,進一步驗證各項假說與模型的適用性。

    研究結果顯示,生成式 AI 與傳統資訊系統在影響構面上存在顯著差異。對於生成式 AI 而言,資訊品質與服務品質對使用者的信任與滿意度具有顯著的正向影響,顯示出使用者更重視系統提供資訊的準確性、相關性及即時性。然而,系統品質對使用者信任的影響未達顯著,表示使用者在評估生成式 AI 系統時,系統技術層面的表現並非關鍵的影響因素。

    基於研究結果,本研究提出實務建議,企業在導入生成式 AI 系統時,應優先聚焦於提升資訊品質與服務品質下的準確性、即時性等特性,確保生成內容能滿足使用者的實際需求與應用情境,而操作的流暢度及介面設計等系統品質的特性在資源有限的情況下可作為次要優化項目,將有限資源投入在使用者最為關注的核心需求上,有助於提高生成式 AI 系統的導入成效。

    Since OpenAI introduced the GPT (Generative Pre-trained Transformer) series models, generative AI has gained widespread attention worldwide. This technology represents a significant breakthrough in artificial intelligence, enabling the automatic generation of diverse content, such as text, images, and music. With the rapid advancement of technology, the applications of generative AI have gradually expanded across various industries. However, during the adoption of this new technology, businesses may encounter numerous influencing factors and challenges. This study is based on the Information Systems Success Model and examines the impact of factors such as system quality, information quality, service quality, user satisfaction, and intention to reuse on the adoption process of generative AI. Additionally, trust is introduced as a new dimension to explore its interactions with the other five dimensions. A questionnaire survey method is employed in this study to collect public experiences with generative AI, further validating hypotheses and assessing the applicability of the proposed model. The study results indicate significant differences between generative AI and traditional information systems in terms of influencing factors. For generative AI, information quality and service quality have a significant positive impact on user trust and satisfaction, demonstrating that users place greater importance on the accuracy, relevance, and timeliness of the information provided by the system. However, the impact of system quality on user trust is not significant, suggesting that the technical performance of the system is not a key determining factor when users evaluate generative AI systems. Based on the research findings, this study provides practical recommendations. When businesses adopt generative AI systems, they should prioritize improving the accuracy and timeliness of information quality and service quality to ensure that the generated content meets users' actual needs and application scenarios. Meanwhile, aspects related to system quality, such as operational smoothness and interface design, can be considered secondary optimization items when resources are limited. Allocating resources to address users' most critical concerns will help enhance the effectiveness of generative AI system adoption.

    摘要 I 致謝 VI 目錄 VII 圖目錄 IX 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 預期貢獻 4 1.5 研究流程 5 第二章 文獻探討 6 2.1 生成式AI 6 2.2 資訊系統成功模式 6 2.2.1 系統品質 8 2.2.2 資訊品質 11 2.2.3 服務品質 14 2.2.4 使用者滿意度 17 2.2.5 再次使用意圖 18 2.3 信任 19 2.4 小結 22 第三章 研究方法 23 3.1 研究變數操作型定義 23 3.1.1 系統品質 23 3.1.2 資訊品質 24 3.1.3 服務品質 24 3.1.4 信任 24 3.1.5 使用者滿意度 25 3.1.6 再次使用意圖 25 3.2 問卷設計 26 3.3 研究問卷回收蒐集方式 28 3.4 資料分析方法 29 3.4.1 描述性統計分析 29 3.4.2 問卷題目信效度分析 29 3.4.3 結構方程模型分析 30 3.5 小結 30 第四章 資料分析結果與討論 31 4.1 敍述性統計分析 31 4.2 問卷信效度分析 34 4.3 結構方程模型分析 37 4.4 小結 40 第五章 結論 41 5.1 研究結論發現 41 5.2 管理意涵 43 5.3 學術意涵 43 5.4 研究限制與未來研究建議 44 參考文獻 45 附錄-正式問卷 49

    Alzahrani, A. I., Mahmud, I., Ramayah, T., Alfarraj, O., & Alalwan, N. (2019). Modelling digital library success using the DeLone and McLean information system success model. Journal of Librarianship and Information Science, 51(2), 291-306.
    Baek, T. H., & Kim, M. (2023). Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence. Telematics and Informatics, 83, 102030.
    Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33(1), 63.
    Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at work (No. w31161). National Bureau of Economic Research.
    Chen, J. V., Jubilado, R. J. M., Capistrano, E. P. S., & Yen, D. C. (2015). Factors affecting online tax filing–an application of the IS success model and trust theory. Computers in Human Behavior, 43, 251-262.
    Chui, M., Hazan, E., Roberts, R., Singla, A., & Smaje, K. (2023). The economic potential of generative AI.
    Chung, N., & Kwon, S. J. (2009). Effect of trust level on mobile banking satisfaction: A multi-group analysis of information system success instruments. Behaviour & Information Technology, 28(6), 549-562.
    DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95.
    DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30.
    Damabi, M., Firoozbakht, M., & Ahmadyan, A. (2018). A model for customers satisfaction and trust for mobile banking using DeLone and McLean model of information systems success. Journal of Soft Computing & Decision Support Systems, 5(3).
    Eisfeldt, A. L., Schubert, G., & Zhang, M. B. (2023). Generative AI and firm values (No. w31222). National Bureau of Economic Research.
    Ebert, C., & Louridas, P. (2023). Generative AI for software practitioners. IEEE Software, 40(4), 30-38.
    Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative AI. Business & Information Systems Engineering, 66(1), 111-126.
    Fornell, C. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Publications Sage.
    Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277-304.
    Gozalo-Brizuela, R., & Garrido-Merchan, E. C. (2023). ChatGPT is not all you need: A state of the art review of large generative AI models. arXiv preprint arXiv:2301.04655.
    Gounaris, S. P., & Venetis, K. (2002). Trust in industrial service relationships: Behavioral consequences, antecedents and the moderating effect of the duration of the relationship. Journal of Services Marketing, 16(7), 636-655.
    Gefen, D., Karahanna, E., & Straub, D. W. (2003). Inexperience and experience with online stores: The importance of TAM and trust. IEEE Transactions on Engineering Management, 50(3), 307-321.
    Gable, G. G., Sedera, D., & Chan, T. (2008). Re-conceptualizing information system success: The IS-impact measurement model. Journal of the Association for Information Systems, 9(7), 18.
    Hsu, M. H., Chang, C. M., Chu, K. K., & Lee, Y. J. (2014). Determinants of repurchase intention in online group-buying: The perspectives of DeLone & McLean IS success model and trust. Computers in Human Behavior, 36, 234-245.
    Jovanovic, M., & Campbell, M. (2022). Generative artificial intelligence: Trends and prospects. Computer, 55(10), 107-112.
    Jo, A. (2023). The promise and peril of generative AI. Nature, 614(1), 214-216.
    Kim, J., Hong, S., Min, J., & Lee, H. (2011). Antecedents of application service continuance: A synthesis of satisfaction and trust. Expert Systems with Applications, 38(8), 9530-9542.
    Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.
    Lee, K. C., & Chung, N. (2009). Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean’s model perspective. Interacting with Computers, 21(5-6), 385-392.
    Lee, H., Kim, J., & Kim, J. (2007). Determinants of success for application service provider: An empirical test in small businesses. International Journal of Human-Computer Studies, 65(9), 796-815.
    Liu, C. T., Guo, Y. M., & Lee, C. H. (2011). The effects of relationship quality and switching barriers on customer loyalty. International Journal of Information Management, 31(1), 71-79.
    Marshall, A., Bieck, C., Dencik, J., Goehring, B. C., & Warrick, R. (2024). How generative AI will drive enterprise innovation. Strategy & Leadership, 52(1), 23-28.
    McAfee, A., Rock, D., & Brynjolfsson, E. (2023). How to capitalize on generative AI. Harvard Business Review, 101(6), 42-48.
    McKnight, D. H., Kacmar, C. J., & Choudhury, V. (2004). Dispositional trust and distrust distinctions in predicting high- and low-risk Internet expert advice site perceptions. E-Service, 3(2), 35-58.
    Mogaji, E., Viglia, G., Srivastava, P., & Dwivedi, Y. K. (2024). Is it the end of the technology acceptance model in the era of generative artificial intelligence? International Journal of Contemporary Hospitality Management, 36(10), 3324-3339.
    Nunnally, J. C. (1978). An overview of psychological measurement. Clinical Diagnosis of Mental Disorders: A Handbook, 97-146.
    Ooi, K. B., Tan, G. W. H., Al-Emran, M., Al-Sharafi, M. A., Capatina, A., Chakraborty, A., ... & Wong, L. W. (2023). The potential of generative artificial intelligence across disciplines: Perspectives and future directions. Journal of Computer Information Systems, 1-32.
    O'Hara, K. (2012). A general definition of trust.
    Prasad Agrawal, K. (2024). Towards adoption of generative AI in organizational settings. Journal of Computer Information Systems, 64(5), 636-651.
    Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service quality: A measure of information systems effectiveness. MIS Quarterly, 173-187.
    Petter, S., & Fruhling, A. (2011). Evaluating the success of an emergency response medical information system. International Journal of Medical Informatics, 80(7), 480-489.
    Petter, S., & McLean, E. R. (2009). A meta-analytic assessment of the DeLone and McLean IS success model: An examination of IS success at the individual level. Information & Management, 46(3), 159-166.
    Ribbink, D., Van Riel, A. C., Liljander, V., & Streukens, S. (2004). Comfort your online customer: Quality, trust and loyalty on the Internet. Managing Service Quality: An International Journal, 14(6), 446-456.
    Roky, H., & Al Meriouh, Y. (2015). Evaluation by users of an industrial information system (XPPS) based on the DeLone and McLean model for IS success. Procedia Economics and Finance, 26, 903-913.
    Tam, C., Loureiro, A., & Oliveira, T. (2020). The individual performance outcome behind e-commerce: Integrating information systems success and overall trust. Internet Research, 30(2), 439-462.
    Udo, G. J., Bagchi, K. K., & Kirs, P. J. (2010). An assessment of customers’ e-service quality perception, satisfaction and intention. International Journal of Information Management, 30(6), 481-492.
    Vujović, D. (2024). Generative AI: Riding the new general purpose technology storm. Ekonomika Preduzeća, 72(1-2), 125-136.
    Wang, Y., Lo, H. P., & Yang, Y. (2004). An integrated framework for service quality, customer value, satisfaction: Evidence from China's telecommunication industry. Information Systems Frontiers, 6, 325-340.
    Wang, H. Y., & Wang, S. H. (2010). Predicting mobile hotel reservation adoption: Insight from a perceived value standpoint. International Journal of Hospitality Management, 29(4), 598-608.
    Wang, W. T., & Lu, C. C. (2014). Determinants of success for online insurance web sites: The contributions from system characteristics, product complexity, and trust. Journal of Organizational Computing and Electronic Commerce, 24(1), 1-35.
    Wu, K., Zhao, Y., Zhu, Q., Tan, X., & Zheng, H. (2011). A meta-analysis of the impact of trust on technology acceptance model: Investigation of moderating influence of subject and context type. International Journal of Information Management, 31(6), 572-581.
    Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085-1091.
    Zhang, X., & Prybutok, V. R. (2005). A consumer perspective of e-service quality. IEEE Transactions on Engineering Management, 52(4), 461-477.
    Zhang, P., & Kamel Boulos, M. N. (2023). Generative AI in medicine and healthcare: Promises, opportunities and challenges. Future Internet, 15(9), 286.

    無法下載圖示 校內:2030-02-03公開
    校外:2030-02-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE