| 研究生: |
林維致 Lin, Wei-Chih |
|---|---|
| 論文名稱: |
結合魚類多樣性及棲地品質之連通性指數於結構物移除順序的決定 Prioritizing Barriers Removal Using River Connectivity Indices with Fish Biodiversity and Habitat Quality |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 縱向連通性 、物種多樣性 、樹狀連通性指數 、棲地碎形維度 、河川恢復工程 |
| 外文關鍵詞: | Longitudinal connectivity, Biodiversity, Dendritic Connectivity Index(DCI), Mean Patch Fraction Dimension (MPFD), River restoration |
| 相關次數: | 點閱:132 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討利嘉溪上游支流大南北溪的河川連通性,並對河川的連通狀況進行量化。為了恢復溪流生態環境以及營造生態友善空間,研究區域進行了結構物調降計畫,本研究將針對研究區域內結構物調降前後的河川連通性進行量化,並且對結構物的移除順序提出建議。本研究計算了研究區域內的樹狀連通性指數(DCI)、物種多樣性指數及棲地碎形維度,將三者結合後發展出整合性計算河川連通性的方法,稱之為綜合連通性指數(CCI)。
結果顯示研究區域內的河川連通性受結構物影響嚴重,河川棲地也因為結構物的影響而存在嚴重的破碎化。在尚未進行結構物調降前大南北溪的DCI值為13.65%,CCI值為37.56%。根據CCI的計算結果,移除優先順序1到3的結構物分別為「十號潛壩」、「二號防砂壩」及「七號潛壩」。經調降過後許多結構物已不存在通過障礙的狀況,大南北溪的DCI值增為23.65%,CCI值增為40.13%。根據CCI的計算結果,移除順序1到3的結構物分別為「新固床工」、「七號潛壩」及「一號防砂壩」。結果顯示結構物的調降對河川縱向連通性有良好的改善,連通性的增加將有利於水生生物在河川中進行移動並恢復生態環境。根據本研究的研究結果,將對低矮壩結構物對於魚類通過率以及河川縱向連通性之影響有更進一步的了解,其結果也能作為河溪復育之參考。
In this study, we discuss the river connectivity of the Dananbei Stream. The longitudinal connectivity index values have been calculated before and after the barriers lowering, and the suggestion of the barriers removing priority is made accordingly. The Dendritic Connectivity Index (DCI), Biodiversity Index and Mean Patch Fraction Dimension are applied to develop a new method of the longitudinal connectivity that is called Comprehensive Connectivity Index (CCI). Before lowering the barriers, the DCI value was 13.65%, and the CCI value was 37.56%. Based on the results of CCI, the barriers removing priority 1 through 3 were, "No. 10 Submerged Dam", "No. 2 Check Dam" and then "No. 7 Submerged Dam". Then after lowering some of the barriers, the DCI value is increased to 23.65%, and the CCI value to 40.13%. According to the new factor of CCI, the barriers removing priority 1 through 3 become, "New Groundsill Work ", "No. 7 Submerged Dam" and then "No. 1 Check Dam". The result shows that the longitudinal connectivity is significantly affected by the barriers, and lowering the barriers could improve the connectivity positively. Based on this study, we learned more about the impact of low-head dam on fish passability and longitudinal connectivity of the river, and these results can also be used as a reference for river restoration.
Armstrong, J., Kemp, P., Kennedy, G., Ladle, M., & Milner, N. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fisheries research, 62(2), 143-170. (2003).
Atkinson, S., Bruen, M., O'Sullivan, J. J., Turner, J. N., Ball, B., Carlsson, J., et al. An inspection-based assessment of obstacles to salmon, trout, eel and lamprey migration and river channel connectivity in Ireland. Science of the Total Environment, 719, 137215. (2020).
Bellucci, C. J., Becker, M. E., Czarnowski, M., & Fitting, C. A novel method to evaluate stream connectivity using trail cameras. River Research and Applications, 36(8), 1504-1514. (2020).
Benayas, J. M. R., & de la Montana, E. Identifying areas of high-value vertebrate diversity for strengthening conservation. Biological Conservation, 114(3), 357-370. (2003).
Buddendorf, W. B., Malcolm, I. A., Geris, J., Wilkinson, M. E., & Soulsby, C. Metrics to assess how longitudinal channel network connectivity and in‐stream Atlantic salmon habitats are impacted by hydropower regulation. Hydrological Processes, 31(12), 2132-2142. (2017).
Carnie, R., Tonina, D., McKean, J. A., & Isaak, D. Habitat connectivity as a metric for aquatic microhabitat quality: application to Chinook salmon spawning habitat. Ecohydrology, 9(6), 982-994. (2016).
Cooper, A. R., Infante, D. M., Wehrly, K. E., Wang, L., & Brenden, T. O. Identifying indicators and quantifying large-scale effects of dams on fishes. Ecological Indicators, 61, 646-657. (2016).
Cote, D., Kehler, D. G., Bourne, C., & Wiersma, Y. F. A new measure of longitudinal connectivity for stream networks. Landscape Ecology, 24(1), 101-113. (2008).
Diebel, M., Fedora, M., Cogswell, S., & O'Hanley, J. Effects of road crossings on habitat connectivity for stream‐resident fish. River Research and Applications, 31(10), 1251-1261. (2015).
Duarte, G., Segurado, P., Haidvogl, G., Pont, D., Ferreira, M. T., & Branco, P. Damn those damn dams: Fluvial longitudinal connectivity impairment for European diadromous fish throughout the 20th century. Science of The Total Environment, 761, 143293. (2021).
Fencl, J. S., Mather, M. E., Costigan, K. H., & Daniels, M. D. How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation. PLoS one, 10(11), e0141210. (2015).
Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. A hierarchical framework for stream habitat classification Viewing streams in a watershed context. (1986).
Gillette, D. P., Tiemann, J. S., Edds, D. R., & Wildhaber, M. L. Spatiotemporal patterns of fish assemblage structure in a river impounded by low-head dams. Copeia, 2005(3), 539-549. (2005).
Hermoso, V., Kennard, M. J., & Linke, S. Integrating multidirectional connectivity requirements in systematic conservation planning for freshwater systems. Diversity and Distributions, 18(5), 448-458. (2012).
Hu, P., Zeng, Q. H., Wang, J. H., Hou, J. M., Wang, H., Yang, Z. F., et al. Identification of hotspots of threatened inland fish species and regions for restoration based on longitudinal river connectivity. Journal of Environmental Management, 290. (2021).
Karle, K. F. Analysis of an efficient fish barrier assessment protocol for highway culverts. (2005).
Kemp, P., & O'hanley, J. Procedures for evaluating and prioritising the removal of fish passage barriers: a synthesis. Fisheries Management and Ecology, 17(4), 297-322. (2010).
King, S., O'Hanley, J. R., Newbold, L. R., Kemp, P. S., & Diebel, M. W. A toolkit for optimizing fish passage barrier mitigation actions. Journal of Applied Ecology, 54(2), 599-611. (2017).
Konar, M., Todd, M. J., Muneepeerakul, R., Rinaldo, A., & Rodriguez-Iturbe, I. Hydrology as a driver of biodiversity: Controls on carrying capacity, niche formation, and dispersal. Advances in Water Resources, 51, 317-325. (2013).
Kreutzenberger, K., Sagnes, P., Valade, P., & Voegtlé, B. Évaluer le franchissement des obstacles par les poissons et les macro-crustacés dans les départements insulaires ultramarins. (2019).
Li, Q., Li, Y., Jiang, M., Wang, Y., Xu, D., Chu, L., et al. Effects of low-head dams on fish assemblages in subtropical streams: Context dependence on local habitat and landscape conditions. Ecological Indicators, 121, 107190. (2021).
Liu, Y., Wang, Y., Zhu, Q., Li, Y., Kang, B., Chu, L., et al. Effects of low‐head dams on fish assemblages in subtropical streams: Context dependence on species category and data type. River Research and Applications, 35(4), 396-404. (2019).
Mahlum, S., Kehler, D., Cote, D., Wiersma, Y. F., & Stanfield, L. Assessing the biological relevance of aquatic connectivity to stream fish communities. Canadian Journal of Fisheries and Aquatic Sciences, 71(12), 1852-1863. (2014).
Mandelbrot, B. B. The fractal geometry of nature (Vol. 1): WH freeman New York. (1982).
McGarigal, K. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure (Vol. 351): US Department of Agriculture, Forest Service, Pacific Northwest Research Station. (1995).
McKay, S. K., Schramski, J. R., Conyngham, J. N., & Fischenich, J. C. Assessing upstream fish passage connectivity with network analysis. Ecological applications, 23(6), 1396-1409. (2013).
Ovidio, M., & Philippart, J.-C. The impact of small physical obstacles on upstream movements of six species of fish Aquatic Telemetry (pp. 55-69): Springer. (2002)
Perkin, J. S., & Gido, K. B. Fragmentation alters stream fish community structure in dendritic ecological networks. Ecological Applications, 22(8), 2176-2187. (2012).
Petrosky, C., & Holubetz, T. Idaho habitat evaluation for off-site mitigation record. US Dep. Energy Bonneville Power Admin. Annu. Rep, 83-87. (1985).
Poff, N. L., & Hart, D. D. How dams vary and why it matters for the emerging science of dam removal: an ecological classification of dams is needed to characterize how the tremendous variation in the size, operational mode, age, and number of dams in a river basin influences the potential for restoring regulated rivers via dam removal. BioScience, 52(8), 659-668. (2002).
Pringle, C. M. Exploring how disturbance is transmitted upstream: Going against the flow. Journal of the North American Benthological Society, 16(2), 425-438. (1997).
Pringle, C. M. Hydrologic connectivity and the management of biological reserves: a global perspective. Ecological Applications, 11(4), 981-998. (2001).
Rincón, G., Solana-Gutiérrez, J., Alonso, C., Saura, S., & García de Jalón, D. Longitudinal connectivity loss in a riverine network: accounting for the likelihood of upstream and downstream movement across dams. Aquatic sciences, 79(3), 573-585. (2017).
Rodeles, A. A., Galicia, D., & Miranda, R. A new method to include fish biodiversity in river connectivity indices with applications in dam impact assessments. Ecological Indicators, 117, 106605. (2020).
Roy, M. L., & Le Pichon, C. Modelling functional fish habitat connectivity in rivers: A case study for prioritizing restoration actions targeting brown trout. Aquatic Conservation-Marine and Freshwater Ecosystems, 27(5), 927-937. (2017).
Samia, Y., Lutscher, F., & Hastings, A. Connectivity, passability and heterogeneity interact to determine fish population persistence in river networks. Journal of the Royal Society Interface, 12(110), 20150435. (2015).
Simonović, P., Ristić, R., Milčanović, V., Polovina, S., Malušević, I., Radić, B., et al. Effects of run‐of‐river hydropower plants on fish communities in montane stream ecosystems in Serbia. River Research and Applications, 37(5), 722-731. (2021).
Smith, S., Meiners, S., Hastings, R., Thomas, T., & Colombo, R. Low‐head dam impacts on habitat and the functional composition of fish communities. River Research and Applications, 33(5), 680-689. (2017).
Terencio, D. P. S., Pacheco, F. A. L., Fernandes, L. F. S., & Cortes, R. M. V. Is it safe to remove a dam at the risk of a sprawl by exotic fish species? Science of the Total Environment, 771. (2021).
Tremblay, V., Cossette, C., Dutil, J. D., Verreault, G., & Dumont, P. Assessment of upstream and downstream passability for eel at dams. ICES Journal of Marine Science, 73(1), 22-32. (2016).
van Looy, K., Tormos, T., & Souchon, Y. Disentangling dam impacts in river networks. Ecological indicators, 37, 10-20. (2014).
van Puijenbroek, P. J., Buijse, A. D., Kraak, M. H., & Verdonschot, P. F. Species and river specific effects of river fragmentation on European anadromous fish species. River Research and Applications, 35(1), 68-77. (2019).
Ward, J. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 8(1), 2-8. (1989).
Ward, J. V., & Stanford, J. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated rivers: research & management, 11(1), 105-119. (1995).
Wiens, J. A. Riverine landscapes: taking landscape ecology into the water. Freshwater biology, 47(4), 501-515. (2002).
王順昌、陳樹群。台灣本土性魚類魚骨型魚道上溯試驗研究。中華水土保持學會年會及學術研討會論文摘要集 (2012)。
行政院農委會。2017臺灣淡水魚類紅皮書名錄 (2017)。
林呈益,以歧異度與碎形維度為棲地指標探討堰之影響。國立中央大學土木工程學系碩士論文,桃園縣(2004)。https://hdl.handle.net/11296/2bh4p2。
林家妤,涵管便道對於河川縱向連接性之影響。國立成功大學水利及海洋工程學系碩士論文,台南市(2014)。https://hdl.handle.net/11296/pakyve。
胡通哲,張世倉、李訓煌。八寶圳階段式魚道設計與試驗 中華水土保持學報, 30(1),25-32。(1999)。
許獻彰,極端降雨下河川環境對初級淡水魚類保育之探討。國立成功大學水利及海洋工程學系碩士論文,台南市(2010)。https://hdl.handle.net/11296/sa9kh3。
野聲環境生態顧問有限公司。知本溪及利嘉溪水域生態與棲地監測暨指標物種人工復育評估計畫(2021)。
經濟部水利署水利規劃試驗所。河川生物通道水理模擬及其設計布置原則研擬: 經濟部水利署水利規劃試驗所(2009)。
臺東林區管理處。利嘉溪土砂運移變異觀測計畫 第二次期中報告(2021)。