| 研究生: |
陳靜儀 Chen, Jing-Yi |
|---|---|
| 論文名稱: |
人類遺傳疾病中白血球分子的表現與調控機制
研究 Molecular Mechanisms of Abnormal Expression of Leukocyte Molecules in Human inherited Diseases |
| 指導教授: |
謝奇璋博士
Shieh, Chi-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 唐氏症 、黏著分子 、慢性肉芽腫病 、呼吸爆發 、NADPH氧化脢 、氧活性物質 |
| 外文關鍵詞: | ROS, gp91, NADPH oxidase, respiratory burst, LFA-1, Down syndrome, chronic granulomatous disease |
| 相關次數: | 點閱:108 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
免疫系統的防禦機制常藉由許多蛋白質例如黏著分子、細胞激素、趨化物質、白血球酵素和白血球表面與抗原結合的接受器的參與才能順利執行。如果這些蛋白質發生錯誤,免疫系統將無法發揮其防禦的功能而造成免疫缺陷疾病。遺傳疾病是因為染色體DNA的改變所造成之疾病。基因上的改變常常對免疫反應有著直接或間接的影響,也因此這些遺傳疾病病患會產生異常的免疫反應。我們藉著分析遺傳疾病中基因改變所造成的免疫缺陷,去了解基因在免疫反應的分子機轉所扮演的角色。
唐氏症病人出生時即易受到感染。唐氏症是由於第21對染色體異常所造成的遺傳性疾病。以往的研究報告指出,唐氏症病人有免疫缺陷的病徵產生;除此之外,還有研究指出淋巴細胞表面的LFA-1的表現有增加,這是由於LFA-1的β鏈蛋白(CD18)的基因是位於第21條染色體上,因此在唐氏症病患細胞上有增加的現象。LFA-1對於胸腺細胞在發育成熟過程中傳遞一個重要的訊息,所以在唐氏症病人中是否因過度表現的LFA-1造成不同淋巴細胞分群在發育過程中的異常,進而引起唐氏症病人體內的免疫缺陷。一些研究調查發現這些不同淋巴細胞分群的比例改變在胎兒時期便開始。根據此我們想要知道LFA-1的表現是否隨著年齡有增加的現象。此外,我們也想瞭解不同分群的淋巴細胞上LFA-1的表現是否不同。我們發現在CD8+淋巴細胞及CD45RO+淋巴細胞在唐氏症病童中有較高的表現比例但在CD4+淋巴細胞則沒有。另外我們發現CD4+淋巴細胞、CD8+淋巴細胞及CD45RO+淋巴細胞上的LFA-1表現隨著年紀增加並無明顯的增加。我們推測LFA-1的表現在不同分群的淋巴細胞的發育成熟扮演重要角色。
慢性肉芽腫病(CGD)是一種遺傳性的免疫缺陷疾病。由於白血球表面的NADPH oxidase的缺陷,使得白血球不能夠產生殺死外來病原的氧活性物質(reactive oxygen species,ROS)。NADPH oxidase由五個次單位組成:p40phox、p47phox、p67phox、p22phox和gp91phox。這五個部分的前三個是位於細胞質中,另兩個部分則分布在細胞膜上形成叫作flavocytochrome b558。大多數慢性肉芽腫病人為gp91phox的突變所造成,由於調控gp91phox的基因是位於性染色體上,所以此型的病人我們稱之為X-linked (X91) CGD。為了瞭解CGD的致病中modification對蛋白質合成的監控系統所扮演的角色,我們分析了的 X-linked CGD病人中gp91phox的突變的表現情形為何。在CGD病人中,在gp91phox的點突變造成第338個胺基酸histidine變為tyrosine。我們觀察CGD病人細胞表面的gp91phox表現發現表現在細胞質的gp91phox並未表現在細胞表面。進一步分析細胞質中gp91phox的表現分佈,我們發現gp91phox滯留在內質網中無法送至細胞膜上表現;在與calnexin結合的分析中可知,滯留在內質網中的gp91phox是由於與calnexin結合以致於無法送出內質網到細胞膜表現。因此,我們推測由於gp91phox上的點突變使得gp91phox無法正確褶疊而與calnexin結合滯留在內質網中。這些結果表明modification對蛋白質合成的監控系統在X-linked CGD的致病因中扮演重要的角色。
Abstract
Immune system plays a very important role in preventing host from being infected by pathogenic microorganisms. Many proteins such as cytokines, adhesion molecules, and chemoattractants participate in immune responses. Inherited diseases are caused by changes in chromosomal DNA. The alternations of genes may directly or indirectly affect immune responses and result in immunodeficiency in patients with inherited diseases. In this study, we investigated the immunodeficiencies in inherited diseases to understand how the alterations in genes affect the molecular mechanisms involved in immune responses.
Individuals with Down syndrome are at high risk of infection. Down syndrome (DS) is a disease caused by trisomy of chromosome 21. Previous studies suggested that the immunodeficiency in patients with Down syndrome results from the overexpression of CD18, which is encoded on chromosome 21. Lymphocyte function associated antigen (LFA-1), which is composed of α chain (CD11a) and β chain (CD18, β2 integrin), plays an important role in the development of lymphocyte in thymus and enhancement of signal transduced from T cell receptor. The overexpression of LFA-1 was believed to lead to the abnormal development and function of lymphocytes in patients with DS. We analyzed LFA expression in lymphocyte subpopulations in DS children and in age matched controls. Although older children without DS tend to increase their expression of lymphocyte LFA-1 when compared with younger normal children, DS patients showed no age-associated increase in lymphocyte LFA-1 expression. Two-color analysis with CD4/CD8 and LFA-1 in patients and control showed that proportions of CD4+ lymphocytes were comparable in DS patients and controls, while the proportions of CD8+ lymphocytes in younger DS patients were higher when compared with age-matched controls and close to the proportion in the older DS groups. Proportions of memory lymphocytes expressing the CD45RO isoform were higher in both younger and older DS patients when compared with age-matched control groups. The LFA-1 expression levels on CD45RO+ lymphocytes from younger DS patients were higher than the levels of the controls and declined in the older DS group.
Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease. Because of the deficiency of leukocyte NADPH oxidase, leukocyte cannot produce reactive oxidants to kill invading microorganisms. Most of CGD patients have mutations in the membrane component gp91phox and are inherited as X-linked (X91) CGD. In order to elucidate the role of posttranslational molecular quality control machinery in pathogenesis of CGD, we analyzed the effects of CGD mutation of on the characteristics of an X-linked CGD patient with a point mutation that causes a single amino acid change in the predicted FAD-binding site of gp91phox. The production of gp91phox could be detected in ER, but the expression on cell surface was not detectable. Calnexin binding appeared to be important for ER retention of these mutant gp91phox. These results indicate that the posttranslational molecular quality control machinery in endoplasmic reticulum (ER) plays an important role in pathogenesis of X-linked CGD.
References list
1. D. Nizetic. Functional genomics of the Down syndrome. Croat.Med.J. 42 (4):421-427, 2001.
2. J. F. Jackson, E. R. North, III, and J. G. Thomas. Clinical diagnosis of Down's syndrome. Clin.Genet. 9 (5):483-487, 1976.
3. E. Cuadrado and M. J. Barrena. Immune dysfunction in Down's syndrome: primary immune deficiency or early senescence of the immune system? Clin.Immunol.Immunopathol. 78 (3):209-214, 1996.
4. E. Novo, M. I. Garcia, and J. Lavergne. Nonspecific immunity in Down syndrome: a study of chemotaxis, phagocytosis, oxidative metabolism, and cell surface marker expression of polymorphonuclear cells. Am.J.Med.Genet. 46 (4):384-391, 1993.
5. L. Ahman, E. Back, K. Bensch, and P. Olcen. Non-efficacy of low-dose intradermal vaccination against hepatitis B in Down's syndrome. Scand.J.Infect.Dis. 25 (1):16-23, 1993.
6. G. Lockitch, V. K. Singh, M. L. Puterman, W. J. Godolphin, S. Sheps, A. J. Tingle, F. Wong, and G. Quigley. Age-related changes in humoral and cell-mediated immunity in Down syndrome children living at home. Pediatr.Res. 22 (5):536-540, 1987.
7. C. Franceschi, F. Licastro, P. Paolucci, M. Masi, S. Cavicchi, and M. Zannotti. T and B lypmhocyte subpopulations in Down's syndrome. A study on non-institutionalised subjects. J.Ment.Defic.Res. 22 (3):179-191, 1978.
8. M. Murphy and L. B. Epstein. Down syndrome peripheral blood contains phenotypically mature CD3 TCRα, β+ cells but abnormal proportions of TCRγ, δ+, TCRα, β+ and CD4+ 45RA+ cells: Evidence for an inefficient release of mature T cells by DS thymus. Clin.Immunol.Immunopathol. 62:245-251, 1992.
9. M. J. Barrena, P. Echaniz, C. Garcia-Serrano, and E. Cuadrado. Imbalance of the CD4+ subpopulations expressing CD45RA and CD29 antigens in the peripheral blood of adults and children with Down syndrome. Scand.J.Immunol. 38 (4):323-326, 1993.
10. A. Cossarizza, C. Ortolani, E. Forti, G. Montagnani, R. Paganelli, M. Zannotti, M. Marini, D. Monti, and C. Franceschi. Age-related expansion of functionally inefficient cells with markers of natural killer activity in Down's syndrome. Blood 77 (6):1263-1270, 1991.
11. L. Gerez, L. Madar, G. Arad, T. Sharav, A. Reshef, M. Ketzinel, D. Sayar, C. Silberberg, and R. Kaempfer. Aberrant regulation of interleukin-2 but not of interferon-gamma gene expression in Down syndrome (trisomy 21). Clin.Immunol.Immunopathol. 58 (2):251-266, 1991
12. M. Murphy, R. M. Insoft, L. Pike-Nobile, K. S. Derbin, and L. B. Epstein. Overexpression of LFA-1 and ICAM-1 in Down syndrome thymus. Implications for abnormal thymocyte maturation. J.Immunol. 150 (12):5696-5703, 1993.
13. R. S. Larson and T. A. Springer. Structure and function of leukocyte integrins. Immunol.Rev. 114:181-217, 1990.
14. Y. van Kooyk and C. G. Figdor. Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr.Opin.Cell Biol. 12 (5):542-547, 2000.
15. T. H. Watts and M. A. DeBenedette. T cell co-stimulatory molecules other than CD28. Curr.Opin.Immunol. 11 (3):286-293, 1999.
16. D. D. Patel and B. F. Haynes. Cell adhesion molecules involved in intrathymic T cell development. Semin.Immunol. 5 (4):282-292, 1993.
17. M. J. Barrena, P. Echaniz, C. Garcia-Serrano, P. Zubillaga, and E. Cuadrado. Differential expression of lymphocyte function-associated antigen (LFA- 1) on peripheral blood leucocytes from individuals with Down's syndrome. Clin.Exp.Immunol. 88 (1):41-44, 1992.
18. B. H. Segal, T. L. Leto, J. I. Gallin, H. L. Malech, and S. M. Holland. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine(Baltim.) 79:170-200, 2000.
19. D. Roos, M. de Boer, F. Kuribayashi, C. Meischl, R. S. Weening, A. W. Segal, A. Ahlin, K. Nemet, J. P. Hossle, E. Bernatowska-Matuszkiewicz, and H. Middleton-Price. Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood 87 (5):1663-1681, 1996.
20. M. Geiszt, A. Kapus, and E. Ligeti. Chronic granulomatous disease: more than the lack of superoxide? J.Leuko.Biol. 69:191-196, 2001.
21. S. E. Dorman, V. J. Gill, J. I. Gallin, and S. M. Holland. Burkholderia pseudomallei infection in a Puerto Rican patient with chronic granulomatous disease: case report and review of occurrences in the Americas. Clin.Infect.Dis. 26 (4):889-894, 1998.
22. M. Kim, J. H. Shin, S. P. Suh, D. W. Ryang, C. S. Park, C. Kim, H. Kook, and J. Kim. Aspergillus nidulans infection in a patient with chronic granulomatous disease. J.Korean Med.Sci. 12 (3):244-248, 1997.
23. D. Goldblatt and A. J. Thrasher. Chronic granulomatous disease. Clin.Exp.Immunol. 122 (1):1-9, 2000.
24. C. M. Casimir, H. N. Bu-Ghanim, A. R. Rodaway, D. L. Bentley, P. Rowe, and A. W. Segal. Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat. Proc.Natl.Acad.Sci.U.S.A 88 (7):2753-2757, 1991.
25. Y. Lixin, T. Q. Mark, R. C. Andrew, and C. D. Mary. Gp91 phox is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc. Natl. Acad. Sci. USA. 95:pp. 7993–7998, 1998.
26. L. Ellgaard, M. Molinari, and A. Helenius. Setting the standards: quality control in the secretory pathway. Science 286 (5446):1882-1888, 1999.
27. L. S. Yoshida, F. Saruta, K. Yoshikawa, O. Tatsuzawa, and S. Tsunawaki. Mutation at histidine 338 of gp91(phox) depletes FAD and affects expression of cytochrome b558 of the human NADPH oxidase. J.Biol.Chem. 273 (43):27879-27886, 1998.
28. M. E. Sanders, M. W. Makgoba, S. O. Sharrow, D. Stephany, T. A. Springer, H. A. Young, and S. Shaw. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J.Immunol. 140 (5):1401-1407, 1988.