| 研究生: |
李訓廷 Lee, Shun-Ting |
|---|---|
| 論文名稱: |
成長高品質低密度之n型氮化鎵微米柱用於光電元件 The growth of high quality n type Gallium Nitride microrods with a controlled density by PECVD for LED device |
| 指導教授: |
洪昭南
Hong, Jhao-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 電漿輔助化學氣相沉積法 、奈米柱/微米柱 、本質氮化鎵 、n型氮化鎵 、發光二極體 |
| 外文關鍵詞: | plasma-enhanced chemical vapor deposition, nano/micro rods, intrinsic gallium nitride, n type gallium nitride, light-emitting diodes |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因氮化鎵具有極佳之光電特性,已廣泛應用於各種光電元件之製作。本實驗室結合氮化鎵與奈米柱、微米柱結構之優勢,以自行開發之爐管型電漿輔助化學氣相沉積設備(plasma enhanced chemical vapor deposition),成長氮化鎵奈米柱、微米柱。
因本實驗室先前之氮化鎵奈米柱元件發光效率不如預期,為了增加其材料特性,增加未來元件發光效率,本論文著重討論與解決可能造成發光效率不如預期之三大原因:奈米柱在成長時發生融合成長(merge)的現象、電子濃度不足、表面缺陷。
在探討如何避免奈米柱在成長時發生融合成長一文中,將會討論分別以控制反應物濃度,包含金屬鎵原子及氮離子以及控制基板溫度來抑制此現象,來降低氮化鎵奈米柱之密度並同時維持其晶體品質。
在探討如何增加電子濃度中,將會討論以不同濃度與不同流量之矽烷氣體通入系統來增加電子濃度,並詳細討論光致螢光光譜之改變。
最後將探討如何改變氮化鎵奈米柱之直徑,使其變為微米柱來抑制表面缺陷之問題。
Si-doped GaN micro rods with a controlled density were grown using plasma enhance chemical vapor deposition (PECVD) with different substrate temperature, gallium concentration, and plasma power by density control; with the different silane(SiH4) concentration , composition and flow rates by the growth of n-GaN; with different gallium concentration and growth time by the growth of GaN micro rods. In this paper, SEM images and near band edge emission (NBE) intensity of the photoluminescence (PL) were used to identify the n-GaN micro rod with a controlled density. A decrease in density of GaN nano/micro rods were confirmed by the SEM image while decreasing both of gallium concentration and the plasma power and increasing the substrate temperature. Also, as confirmed by SEM images, when both of gallium concentration and the growth time increases, we found an increase in the diameter of GaN nano rods. The n-GaN is being identified with increasing Si doped were confirmed by the increasing NBE intensity of the PL. All of these phenomenon are discussed in detail.
[1]http://www.ecct.org.tw/print/files/1011213LED%E7%85%A7%E6%98%8E%E7%AF%80%E8%83%BD%E6%87%89%E7%94%A8%E6%8A%80%E8%A1%93%E6%89%8B%E5%86%8A.pdf
[2]http://www.wunan.com.tw/www2/download/preview/5D91.PDF
[3]吳東憲,以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用, 國立成功大學化學工程學系博士論文,2012
[4]李冠諭,電漿化學氣相沉積法成長氮化鎵奈米柱之密度控制,國立成功大學化學工程學系碩士論文,2013
[5]W. L. Wilson, P. F. Szajowski, and L. E. Brus, "Quantum confinement in size-selected, surface-oxidized silicon nanocrystals," Science, vol. 262, pp. 1242-1244, 1993.
[6]N. Mingo, "Thermoelectric figure of merit of II-VI semiconductor nanowires," Applied Physics Letters, vol. 85, pp. 5986-5988, 2004
[7]S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story, Second ed. Berlin: Springer-Verlag, 2000.
[8]http://en.wikipedia.org/wiki/Wurtzite_crystal_structure
[9]http://en.wikipedia.org/wiki/Wurtzite_crystal_structure#mediaviewer/File:Wurtzite-unit-cell-3D-balls.png
[10]S. Porowski, "Growth and properties of single crystalline GaN substrates and homoepitaxial layers," Materials Science and Engineering. B, Solid-state materials for advanced technology, vol. B44, pp. 407-413, 1997.
[11]M. E. Levinshteĭn, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, and SiGe. New York: John Wiley and Sons, 2001.
[12]D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, et al., "Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy," Applied Physics Letters, vol. 77, pp. 1464-1466, 2000.
[13]J. H. Edgar, Properties, processing and applications of gallium nitride and related semiconductors. London: INSPEC, 1999.
[14]S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, et al., "Nanoindentation of epitaxial GaN films," Applied Physics Letters, vol. 77, pp. 3373-3375, 2000
[15]H. Morkoç, Nitride Semiconductors and Devices. Berlin: Springer-Verlag, 1999
[16]D. Zubia and S. D. Hersee, "Nanoheteroepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials," Journal of Applied Physics, vol. 85, pp. 6492-6496, 1999
[17]R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V. D. Hart, et al., "Size-dependent photoconductivity in MBE-grown GaN - Nanowires," Nano Letters, vol. 5, pp. 981-984, 2005.
[18]A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, et al., "The nanorod approach: GaN NanoLEDs for solid state lighting," Physica Status Solidi (C) vol. 8, pp. 2296-2301, 2011.
[19]A. A. Talin, F. Leonard, B. S. Swartzentruber, X. Wang, and S. D. Hersee, "Unusually strong space-charge-limited current in thin wires," Physical Review Letters, vol. 101, pp. 076802, 2008.
[20]A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, et al., "The nanorod approach: GaN NanoLEDs for solid state lighting," Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 8, pp. 2296-2301, 2011.
[21]S. Li and A. Waag, "GaN based nanorods for solid state lighting," Journal of Applied Physics, vol. 111, pp. 071101, 2012.
[22]M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, et al., "Effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1)," Journal of Crystal Growth, vol. 183, pp. 23-30, 1998.
[23]J. Ristic, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., "On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy," Journal of Crystal Growth, vol. 310, pp. 4035-4045, 2008.
[24]R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, "Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)," Applied Physics Letters, vol. 90, pp. 123117, 2007.
[25]K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, "Nucleation conditions for catalyst-free GaN nanowires," Journal of Crystal Growth, vol. 300, pp. 94-99, 2007.
[26]K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, "Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy," Journal of Crystal Growth, vol. 310, pp. 3154-3158, 2008.
[27]http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Semiconductors-III-V-nitrides.pdf
[28]Jörg Neugebauer,Chris G. Van de Walle," Ga vancancies and yellow luminescence in GaN",Journal Applied Physics , vol. 69, pp. 503, 1996
[29]Keun Man Song, Chang Zoo Kim, Jong Min Kim, Dae Ho Yoon, Sung Min Hwang, and Hogyoung Kim, "Properties of Si-Doped a-Plane GaN Grown with Different SiH4 Flow Rates",Japanese Journal of Applied Physics, vol.50, pp. 055502, 2011
[30]Dabing Li, BeiMa, ReinaMiyagawa , WeiguoHu, MitsuhisaNarukawa, HidetoMiyake,Kazumasa Hiramatsu, "Photoluminescence study of Si-doped a-plane GaN grown by MOVPE"Journal of Crystal Growth, vol.311, pp. 2906–2909, 2009
校內:2019-08-08公開