簡易檢索 / 詳目顯示

研究生: 李彥徵
Yen-Cheng-Lee,
論文名稱: 侷域性表面電漿應用於光電化學分解水產氫特性之研究
Effect of Localized Surface Plasmon on Photoelectrochemical Water Splitting with Gallium Nitride Working electrodes
指導教授: 許進恭
Jinn-Kong-Sheu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: 氮化鎵光電化學表面電漿共振光電化學轉換二氧化碳
外文關鍵詞: Gallium Nitride, Photoelectrochemical, LSPR, HCOOH
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去人類大量使用石化燃料,造成溫室效應、空氣汙染等環境的迫害,使得氣候變遷。能源的議題不斷浮上檯面,這是我們應該正視的議題。然而,氫能是有潛力取代石化燃料的,無論是原料的來源、燃燒後能量的多寡,還是燃燒後的產物,氫能都較石化燃料具有優勢。
    本實驗是應用三五族半導體氮化鎵,做為光電化學電解水之工作電極相關特性研究。包含表面電漿原理和應用、表面形貌量測和分析、光電化學分析和應用。目的是為了提升元件的化學穩定性,以及提升照光時分解水產生氫氣、氧氣,以及將二氧化碳轉換為甲酸的效率。
    氮化鎵擁有穩定的化學特性,能抗腐蝕抗酸鹼,且具有可以轉換二氧化碳的寬能隙。但是寬能隙也使得氮化鎵只能吸收紫外光波段的能量,然而紫外光占總太陽能光譜僅5%。於是我們原件上利用奈米金屬粒子的特性,金屬粒子中的電子因電磁波的影響產生震盪,粒子與粒子之間會產生共振,因而吸收特定能量。實驗中我們調整條件,使元件額外吸收可見光波段的能量,進而提升氮化鎵產生氫氣和轉換二氧化碳的能力。調整結構後,確實成功提升氮化鎵工作電極的效能,產氫效率從0.92%到1.41%;轉換二氧化碳的效率從0.16%到0.44%。
    最後我們利用三項實驗進一步證明,使用表面電漿共振能夠提升氮化鎵工作電極的效能。實驗一是去除原件上的金屬粒子,以確認除了金屬粒子以外是否有其他因素造成效能提升,實驗證實此結構和材料並沒有提升效能;實驗二是去除氮化鎵所吸收的波段,利用波長大於400nm的入射光照射,檢驗元件是否能吸收可見光波段的能量,實驗證實元件的確能吸收可見光波段,且提升氮化鎵工作電極的效能。實驗三是量測IPCE,利用單色光去量測個別的光電流。

    In this study, we use the Localized Surface Plasmon Resonance (LSPR) effect to enhance photocurrent density of n-type Gallium Nitride (n-GaN), and evaporate a10nm Ag film on the n-GaN substrate with E-beam evaporator. After annealing for 10 minutes at 200℃, the Ag film becomes nanoparticles with a dimeter of 30nm. Additionally, we sputter 50nm Titanium dioxide (TiO2) on the Ag nanoparticles, enabling it to absorb light with peak wavelength 550nm. However, if GaN does not contact the electrolyte, recombination of charge carriers would be incurred. In order to resolve this problem, we wet etch the LSPR structure into cyclical strip structure so that part of the exposed GaN can effectively discharge holes. With the parameter of 3x20(LSPR width 20μm and GaN width 3μm of cyclical strip structure),we obtain the best result, which is improvement from 7.86 mA/cm2 to 10.66 mA/cm2.in photocurrent density, and 0.91% to 1.41% in hydrogen production.

    摘要 i 致謝 xi 目錄 xii 表目錄 xv 圖目錄 xvi 第一章 序論 1 1.1前言 1 1.2氫能的演進 2 1.3實驗目的與動機 4 第二章 理論基礎 7 2.1液體與半導體接面 7 2.1.1 未照光時的半導體與液體接面 7 2.1.2照光時的半導體與液體接面 11 2.2 Photoelectrochemical(PEC)原理 13 2.2.1 光電化學系統 13 2.2.2參考電極和化學電位 15 2.3光電化學系統的能量轉換效率及產率 18 2.4侷域性表面電漿 20 2.4.1 侷域性表面電漿子原理[25][26] 20 2.4.2 侷域性表面電漿增強光電流 22 第三章 實驗製程與儀器設備 24 3.1 氮化鎵上製作表面電漿子之工作電極製程步驟 24 3.1.1 成長氮化鎵 24 3.1.2表面電漿子之製程步驟 24 3.2氮化鎵上製作表面電漿子之改變製程手法 27 3.3氮化鎵上製作週期性條狀表面電漿子之工作電極製程步驟 28 3.4氮化鎵上製作週期性條狀二氧化鈦之工作電極製程步驟 31 3.5實驗重要量測儀器 32 3.5.1光電化學量測裝置 32 3.5.2氣相層析質譜儀(GC) 33 3.5.3高效液相層析儀(HPLC) 34 3.5.2 實驗製程、量測儀器和實驗藥品 35 第四章 實驗結果與討論 38 4.1氮化鎵上製作表面電漿子工作電極之量測結果 41 4.1.1穿透率的量測 41 4.1.2光電化學系統IV curve量測 43 4.1.3掃描式電子顯微鏡 44 4.2表面電漿子改變製程手法之量測結果 49 4.2.1 穿透率的量測 49 4.2.2光電化學系統IV curve量測 51 4.2.3掃描式電子顯微鏡 52 4.3氮化鎵上製作週期性條狀表面電漿子工作電極之量測結果 55 4.3.1穿透率的量測 55 4.3.2光電化學系統IV curve量測 56 4.3.3光電化學系統長時間產氫量測 59 4.4調整周期性條狀比例的表面電漿工作電極之量測結果 61 4.4.1 光電化學量測IV curve 61 4.4.2光電化學系統長時間產氫和產甲酸量測 62 4.4.3掃描式電子顯微鏡(Scanning Electron Microscopy) 68 4.4.4原子力顯微鏡 71 4.5證明表面電漿對光電化學系統有所貢獻 77 4.5.1氮化鎵上製作條狀二氧化鈦工作電極之量測結果 77 4.5.2 使用GaN Bulk&400nm long pass filter 濾光下量測光電化學IV curve量測 81 4.5.3量測IPCE 84 第五章 結論與未來展望 86 5.1 結論 86 5.2 未來展望 87 參考資料 89

    [1] T.Nejat Veziroglu,” Hydrogen futures: toward a sustainable energy system, “International Journail of Hydrogen Energy,vol.27,pp235~264
    [2] John A. Turner,” Sustainable Hydrogen Production, “Science 13 Aug 2004
    [3] Fujishima, K. Honda (1972), “ Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38.
    [4] A.Fujishima, K. Kohayakawa, and K. Honda (1975), “ Hydrogen production under sunlight with an electrochemical photocell,” Journal of the Electrochemical Society, vol. 122, pp. 1487-1489.
    [5] J.McDougall and E.C.Stoner,”The computation of Fermi-Dirac functions,”Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,vol.237,pp.67-104,1938
    [6] K. Fujii, T. Karasawa, K. Ohkawa (2005), “ Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Japanese journal of applied physics, vol. 44, pp. L543-L545.
    [7] Zhebo Chen and Huyen N. Dinh and Eric Miller,” Photoelectrochemical Water Splitting Standards Experimental Methods and Protocols“ISBN 978-1-4614-8298-7,pp.1-5
    [8] M. Halmann (1978), “ Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells,” Nature, vol. 275, pp. 115-116.
    [9] S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, K. Ohkawa (2011), “ Photo-induced CO2 Reduction with GaN Electrode in Aqueous System,” Applied Physics Express, vol. 4, p. 117101.
    [10] Satoshi Yotsuhashi, Masahiro Deguchi, Yuji Zenitani, Reiko Hinogami,Hiroshi Hashiba, Yuka Yamada, and Kazuhiro Ohkawa1,” CO2 Conversion with Light and Water by GaN Photoelectrode.” Japanese Journal of Applied Physics, 51 (2012) 02BP07
    [11] Scott C. Warren and Elijah Thimsen,” Plasmonic solar water splitting”, The Royal Society of Chemistry 2012, Volume 5 | Number 1, Pages 5097–5460
    [12] A. W. Bott (1998), “ Electrochemistry of Semiconductors,” Curr. Sep., pp. 87-91.
    [13] Allen J.Bard (Editor),Martin Stratmann (Editor),Stuart Licht (Editor),”Encyclopedia of Electrochemistry, Volume 6,Semiconductor Electrodes and Photoelectrochemistry”,John Wiley & Sons, Inc.,2002
    [14] A. J. Nozik, R. Memming (1996), “ Physical chemistry of semiconductor-liquid interfaces,” The Journal of Physical Chemistry, vol. 100, pp. 13061-13078.
    [15] C. A. Grimes, O. K. Varghese, S. Ranjan (2008), Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, New York: Springer Press, pp. 148–152.
    [16] R. V. D. Krol, and M. Grätzel (2012), Photoelectrochemical Hydrogen Production, New York: Springer Press, pp. 47-49.
    [17] C. A. Grimes, O. K. Varghese, S. Ranjan (2008), Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, New York: Springer Press, pp. 120-122.
    [18] C. A. Grimes, O. K. Varghese, S. Ranjan (2008), Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, New York: Springer Press, pp. 35-52.
    [19] T. Ogita, Y. Uetake, Y. Yamashita, A. Kuramata, S. Yamakoshi, and K. Ohkawa (2015), “ InGaN photocatalysts on conductive Ga2O3 substrates,” Phys. Status Solidi A, vol. 212, pp. 1029-1032.
    [20] T. Sekimoto, S. Shinagawa, Y. Uetake, K. Noda, M. Deguchi, S. Yotsuhashi, and K. Ohkawa (2015), “ Tandem photo-electrode of InGaN with two Si p-n junctions for CO2 conversion to HCOOH with the efficiency greater than biological photosynthesis,” Appl. Phys. Lett., vol. 106, p. 073902.
    [21] A. J. Bard, L. R. Faulkner (2001), Eelectrochemical Methods: Fundamentals and Applications, Second Edition, New York: John Wiley & Sons, pp. 2–3.
    [22] R. V. D. Krol, and M. Grätzel (2012), Photoelectrochemical Hydrogen Production, New York: Springer Press, pp. 75–77.
    [23] C. A. Grimes, O. K. Varghese, S. Ranjan (2008), Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, New York: Springer Press, pp. 126–131.
    [24] Hen Dotan†, Nripan Mathews‡, Takashi Hisatomi‡, Michael Grätzel‡, and Avner Rothschild,” On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting” J. Phys. Chem. Lett., 2014, 5 (19), pp 3330–33
    [25] 吳民耀,劉威志,”表面電漿子理論與模擬”,物理雙月刊,二十八卷二期,四月 2006.
    [26] 邱國斌、蔡定平,”金屬表面電漿簡介”,物理雙月刊,二十八卷二期四月 2006.
    [27] C. F. Bohren,D. R. Huffman,”Absorption and scattering of light by small particles”,Wiley Interscience, New York,1983
    [28] M. D. Malinsky,K. L. Kelly,G. C. Schatz,R. P. Van Duyne,”Nanosphere lithography:Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles”, J. Phys.Chem B, vol. 105,p.2343,2001.
    [29] Katherine A, Willets and Richard P,Van Duyne, “Exploitation of Localized Surface Plasmon Resonance”,Adv. Mater.,Vol.16,No.19,2004
    [30] E. Hutter and J. H. Fendler,”Controlling the interaction between localized and delocalized surface plasmon modes:experiment and numerical caluations”,Physical Review B,vol.74,p.155,2006
    [31] J. B. Khurgin and G. Sun.,”Enhancement of optical properties of nanoscaled objects by metal nanoparticles”,optical Society of Americam, vol.26,No.12,2009
    [32] R. T. Hill,j. j. Mock,Y. Urzhumov,D. S. Sbba,S. J. Oldenburg,S. Y. Chen,A. A. Lazarides,A Chilkoti, and D. E. Smith,”Enhancement of Light”,Nano. Lett.,VOL.10,P.4150,2010
    [33] 巨岩科技機台訓練講座PPT
    [34] 林玉晟”探討侷域性表面電漿子應用於氮化銦鎵系列光偵測器之影響”成功大學光電工程學系,2011年
    [35] Meng Ni, Michael K.H. Leung_, Dennis Y.C. Leung, K. Sumathy,” A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production” 2006 Elsevier Ltd, Renewable and Sustainable Energy Reviews11 (2007) 401–425
    [36] Zuwei Liu,‡ Wenbo Hou,§ Prathamesh Pavaskar,† Mehmet Aykol,† and Stephen B. Cronin,” Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination”,ASE publication, Nano Lett. 2011, 11, 1111–1116

    [37] Ewa Kowalska,*ab Ryu Abea and Bunsho Ohtania.” Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis”, The Royal Society of Chemistry 2009, DOI: 10.1039/b815679d
    [38] A.Usikov, S. Luryi, A. Nikiforov, H. Helava, Yu. Makarov, M. Gouzman,” Photo-Electrochemical Etching in the Process of Direct H2 Generation by Illumination of GaN-Based Material Structures Immersed in Water”, High Speed Electronics and SystemsVol. 25, Nos. 1 & 2 (2016) 1640009
    [39] C. A. Grimes, O. K. Varghese, S. Ranjan (2008), Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, New York: Springer Press, pp. 120-122.
    [40] Michelle Duval Malinsky, K. Lance Kelly, George C. Schatz, and Richard P. Van Duyne, “Nanosphere lithography:Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles”, The Journal of Physical Chemistry B, Vol. 105, pp. 2343-2350, 2001.

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE