簡易檢索 / 詳目顯示

研究生: 李琮祺
Lee, Tsung-Chu
論文名稱: 三維翼型人工心瓣之流場數值模擬
Numerical Flow Simulation of Three-Dimensional Aero-Shaped Artificial Heart Valve
指導教授: 陸鵬舉
Lu, Pong-Jeu
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 68
中文關鍵詞: 人工心瓣翼型計算流體力學
外文關鍵詞: Aero-Shaped, CFD, heart valve
相關次數: 點閱:114下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以二維優化後的ASV-1翼型為截面形狀,建構出一三維的翼型人工心瓣,並利用計算流體力學的方法來進行葉瓣在主動脈血管流場數值模擬,以分析三維翼型人工心瓣的血液動力特性。因三維翼型瓣為一低展旋比外型,會形成翼前緣渦流(Leading-Edge Vortices),這兩對稱渦流對流場會造成相當大的三維效應,而使二維與三維流場產生明顯的差異。翼前緣渦流會將管流外部高速流體捲入葉瓣背風面(leeside)的尾流區,因此強化了分離區的流體動能而減少了血栓生成的可能性。本研究中尋找出的三維翼型人工心瓣的最佳旋轉中心位置為0.325c,與二維流場的位置略有不同。此旋轉中心位置的修正除可獲得接近靜平衡最大開孔角合力矩之外,同時也可減少全壓損耗(Total Pressure Loss)。為了增加翼型瓣的翼後緣(Trailing Edge)結構強度,在翼後緣部位做倒圓角(Rt.e.=0.05c)的修正,此修正不致對整個流場的血動力(Hemodynamics)特性產生太大的影響。與平板心瓣相比,修正過後的翼型瓣在三維流場中,血液通過葉瓣時的壓力損耗低,駐留區小,雷諾應力與血管壁剪應力皆低,因而較不易產生血栓現象。本研究證實以翼型曲線外型作為人工心瓣外型,的確可以改進人工心瓣血管流的血動力特性。

    A three-dimensional (3D) Aero-Shaped-Valve was designed by using the previously optimized two-dimensional (2D) ASV-1 configuration as the sectional shape. Computational Fluid Dynamics was employed to analyze this ASV aorta flow to see whether hemodynamic properties can be improved as concluded previously in the 2D optimization. The 3D ASV occluder is a low aspect-ratio configuration, which may generate leading-edge vortices that are not seen in the 2D ASV-1 flow. High-speed fluid particles were entrained into the low-speed separation zone, hence greatly energize the stagnant, recirculatory leeside flowfield of the occluder. This vortex-induced mixing effect is the main 3D mechanism that reduces the possibility of thrombus formation. In the present 3D study, the zero-moment rotation center was found to be located at the 0.325c position, which, in the main time, can reduce the total pressure loss as compared to that using the 2D optimized rotation center position. The trailing-edge of the 3D ASV occluder was modified using a rounded trailing-edge (Rt.e.=0.05c) to strengthen the structural integrity. It was found that this trailing-edge modification does not change the flow properties significantly. Comparing to the convectional plate-like occluder, the hemodynamic characteristics can be improved in terms of lower total pressure loss, smaller stagnation region, reduced turbulent Reynolds stresses and wall shear stress for the ASV occluder design. Occluder configuration is hence justified critical to the heart valve design and hemodynamics can be significantly improved as airfoil-like shapes are considered.

    中文摘要……………………………………………………………….i 英文摘要……………………………………………………………….iii 誌謝…………………………………………………………………….iv 目錄…………………………………………………………………….v 表目錄……………………………………………………………….viii 圖目錄………………………………………………………………….ix 符號說明……………………………………………………………….xi 第一章 緒論……………………………………………………………..1 1-1 前言……………………………………………………………….…1 1-2 人工心瓣的簡介…………………………………………………….2 1-3 理想人工心辦……………………………………………………….4 1-4 二維翼型人工心瓣………………………………………………….4 1-5 三維翼型人工心瓣簡介…………………………………………….5 1-6 研究目的與方法…………………………………………………….6 第二章 數值方法………………………………………………………..9 2-1 數學模式…………………………………………………………….9 2-1.1 統御方程式………………………………………………….....9 2-1.2 紊流模型(Turbulence Model)…………………………......10 2-2 格點系統…………………………………………………………..12 2-3 邊界條件…………………………………………………………..13 2-3.1 壁面邊界 (Wall Boundary)……………………………......13 2-3.2 外邊界條件………………………………………………......13 2-4 物理條件…………………………………………………………..14 2-5 程式驗證(Validation)…………………………………………..15 2-6 格點獨立(Grid Independence)測試…………………………….16 第三章 三維翼型瓣…………………………………………………...18 3-1 翼型瓣設計概念…………………………………………………..18 3-1.1基本人工心瓣的設計要求……………………………….......18 3-1.2 翼型瓣設計概念…………………………………………......19 3-2 二維翼型瓣設計概念……………………………………………..19 3-3 三維翼型瓣設計概念……………………………………………..20 3-4 三維翼型瓣的修正………………………………………………..22 3-4.1 旋轉中心的修正…………………………………………......23 3-4.2 翼後緣的修正……………………………………………......24 第四章 二維與三維翼型人工心瓣…………………………………….26 4-1 二維與三維翼型人工心瓣的差異性……………………………..26 4-1.1 二維與三維翼型人工心瓣速度分部……………………......26 4-1.2 二維與三維翼型人工心瓣的全壓損耗…………………......28 4-1.3 二維與三維翼型人工心瓣的合力矩……………………......28 4-1.4 二維與三維翼型人工心瓣的壁面剪應力………………......29 4-2 三維翼型人工心瓣(ASV)與平板(Plate)的比較………………..30 4-2.1 壁面剪應力和壓力損耗的比較…………………………......31 4-2.2雷諾應力的比較………………………………………….......32 4-2.3 速度向量圖的比較………………………………………......32 4-3 素流小渦旋(Eddies)對血液的影響…………………………………..33 第五章 結論與未來工作……………………………………………….36 5-1 結論………………………………………………………………..36 5-2 未來工作…………………………………………………………..37 參考文獻………………………………………………………………..39 表………………………………………………………………….…….44 圖………………………………………………………………….….48

    [1] 圖解家庭醫學大百科,啓思文化出版.
    [2] 朱樹勳,”心臟病與開刀手術,” 健康世界雜誌發行, 1997.
    [3] Vongpatanasin, W., Hills, L. D., and Lange, R. A., “Prosthetic Heart Valve,” The New England Journal of Medicine, Vol. 335, No. 6, 1996, pp. 407-416.
    [4] Baldwin, L. T., Deutsch, S., Petrie, H. L., and Tarbell, J. M. “Determination of Principal Reynolds Stresses in Pulsatile Flows After Elliptical Filtering of Discrete Velocity Measurements,” Journal of Biomechanical Engineering, Vol. 115, 1993, pp. 396-403.
    [5] Huang, Z. J., Merkle, C. L., Abdallah, S., and Tarbell, J. M., “Numerical Simulation of Unsteady Laminar Flow Through a Tilting Disk Heart Valve: Prediction of Vortex Shedding,” Journal of Biomechanics, Vol. 27, No. 4, 1994, pp. 391-402.
    [6] White, F. M., Viscous Fluid Flow, Second Edition, McGraw-Hill. Inc., 1991, pp. 436-449.
    [7] Yakot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G., “ Development of Turbulence Models for Shear Flow by a Double Expansion Technique,” Physics of Fluid, Part A, Vol. 4, No. 7,1992 pp. 1510-1520.
    [8] Guide for CFX-5.5 Solver, AEA Technology Press.
    [9] Liu, J. S., Lu, P. C., and Chu, S. H., ” Turbulence Characteristics Downstream of Bileaflet Aortic Valve Prostheses,” Journal of Biomechanical Engineering, Vol. 122, 2000, pp. 118-124.
    [10] Fox, R.W., McDonald, A.T., Introduction to Fluid Mechanics, Fourth Edition, 1994, pp. 32.
    [11] Shim, E. B., Chang, K. S., “ Numerical Analysis of Three-Dimensional Bjork-Shiley Valvular Flow in an Aorta,” Journal of Biomechanical Engineering, Vol. 119, 1997 pp. 45-51.
    [12] Lei, M., Van Steenhoven A. A., and Van Campen, D. H. “ Experimental and Numerical Analyses of The Steady Flow Field Around an Aortic Bjork-Shiley Standard Valve Prosthesis,” J. Biomechanics, Vol. 25, No. 3, 1992 pp. 213-222.
    [13] Yoganathan, A. P., Corcoran, W. H., and Harrison, E. C., “In Vitro Velocity Measurement In The Vicinity Aortic Prostheses,” J. Biomechanics, Vol. 12, 1979 pp. 135-152.
    [14] Rosenfeld, M., Avrahami, I., and Einav, S., “ Unsteady Effects on the Flow Across Tilting Disk Valve,” ASME J. Biomechanical Engineering, Vol. 124, 2002, pp. 21-29.
    [15] Smith, R., Blick, E., Coalson, J., and Stein, P., “Thrombus Production by Turbulence,” Journal of Applied Physiology, Vol. 32, 1972, pp. 261-264.
    [16] Stein, P. D., and Sabbah, M. N, “ Measured Turbulence and Its Effect on Thrombus Formation,” Circulation Research, Vol. 35, 1974, pp. 608-614.
    [17] Sallam, A. M. and Hwang, N. H. C., “ Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses,” Biorheology, Vol. 21, 1984, pp. 783-797.
    [18] Williams, A. R., ” Release of Serotonin from Human Platelets by Acoustic Microstreaming.” Journal of the Acoustical Society of America, Vol. 56, No. 5, 1974, pp. 1640-1643.
    [19] Hung, T. C., Hochmuth, R. M., Joist, J. H., and Sutera, S. P., “Shear-Induced Aggregation and Lysis of Platelets,” ASAIO, Vol. 22, 1976, pp. 285-290.
    [20] Fry, D. L., “ Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients,” Circulation Research, Vol. 22, 1968, pp. 165-197.
    [21] Fry, D. L., “ Certain Histological and Chemical Responses of the Vascular Interface to Acutely Induced Mechanical Stresses in the Aorta of the Dog,” Circulation Research, Vol. 24, 1969, pp. 93-108.
    [22] Yoganathan, A. P., Corcoran, W. H., Harrison, E. C., and Carl, J. R., “The Bjork-Shiley Aortic Prosthesis: Flow Characteristics, Thrombus Formation and Tissue Overgrowth,” Circulation, Vol. 58, No. 1, 1978, pp. 70-76.
    [23] Yoganathan, A. P., Corcoran, W. H., and Harrison, E. C., “In Vitro Velocity Measurements in the Vicinity of Aortic Prostheses,” Journal of Biomechanics, Vol. 12, 1979, pp. 135-152.
    [24] Yoganathan, A. P., Corcoran, W. H., and Harrison, E. C., “ Pressure Drops across Prosthetic Aortic Heart Valves under Steady and Pulsatile Flow-in Vitro Measurements,” Journal of Biomechanics, Vol. 12, 1979, pp. 153-164.
    [25] Yoganathan, A. P., Corcoran, W. H., Harrison, E. C., and Carl, J. R., “ In Vitro Velocity Measurements in the Near Vicinity of the Bjork-Shiley Aortic Prosthesis Using a Laser Doppler Anemometer,” Medical, & Biological Engineering & Computing, Vol. 17,1979, pp. 453-459.
    [26] Yoganathan, A. P., Reamer, H. H., Cororan, W. H., and Harrison, E. C., “ The Bjork-Shiley Aortic Prosthesis: Flow Characteristic of the Present Model vs. the Convexo-Concave Model,” Scandinavian Journal of Thoracic and Cardiovascular Surgery, Vol. 14, 1980, pp. 1-5.
    [27] Wieting, D. W., Eberhard, A. C., Reul, H., Breznock, E. M., Stefan, G. S., and Chandler, J. G., “ Strut Fracture Mechanisms of the Bjork-Shiley Convexo-Concave Heart Valve,” Journal of Heart Valve Disease, Vol. 8, No. 2, 1999, pp. 206-217.
    [28] Abbott, I. H., Von Doenhoff, A. E., Theory of Wing Section, Dover Publications Inc., 1959.
    [29] Anderson, J. D., Fundamentals of Aerodynamics, second edition, McGraw-Hill Inc.,
    [30] 阮婷婷,“二維翼型人工心瓣之最佳化設計”,國立成功大學航空太空工程研究所論文,2002年七月

    下載圖示 校內:2004-08-21公開
    校外:2004-08-21公開
    QR CODE