研究生: |
蔡欣樺 Tsai, Hsin-Hwa |
---|---|
論文名稱: |
探討CEBPD於肝癌細胞之影響與機制 To investigate the role of CEBPD in Hepatocelluar Carcinoma |
指導教授: |
王育民
Wang, Ju-Ming |
學位類別: |
博士 Doctor |
系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | CEBPD 、AMPK 、肝癌 、細胞自噬 、sorafenib 、metformin |
外文關鍵詞: | CEBPD, AMPK, HCC, autophagy, sorafenib, metformin |
相關次數: | 點閱:85 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
轉錄因子CEBPD屬於CCAAT /增強子結合蛋白家族的一員,被認為是一個有潛力的的腫瘤抑制因子,其在乳癌、血癌、子宮頸癌和肝癌中表現量皆有下降的情形。過去的研究也顯示強烈活化CEBPD可以加強癌細胞的死亡。因此,在癌細胞中活化CEBPD可以當作是治療癌症的一個策略。Sorafenib屬於酪胺酸激酶抑制劑,目前是唯一可以延長肝癌晚期患者生存期的治療藥物。然而,其功效是有限的,並且可能與遺傳異質性的原發抗藥性有關。細胞自噬為人體重要的分解代謝過程,它能將受損的胞器或蛋白質載往溶體作清除,其中小分子物質如胺基酸則可以回收再利用。研究報告分別指出肝癌細胞的自噬作用常有失活的現象,強化細胞自噬作用能引發多種癌細胞死亡,因此推論「強力活化細胞自噬作用」應可抑制肝癌形成及甚至應用於治療可能。AMPK是細胞自噬的上游活化因子。然而,過去AMPK和細胞自噬與sorafenib產生原發抗藥性的關聯仍然未知。Hep3B細胞本身對sorafenib比Huh7細胞更具抗藥性,本研究發現表皮生長因子受體(EGFR)的高活性和低細胞自噬反應,應是Hep3B細胞對sorafenib產生原發抗藥性的原因。已知糖尿病用藥metformin能透過AMPK活化CEBPD進而促進自噬細胞死亡,研究結果顯示透過metformin可以提高Hep3B細胞對sorafenib的敏感性。因此總結出活化AMPK可增進sorafenib療效及用於改善抗藥性的臨床應用。
CCAAT/Enhancer binding protein delta (CEBPD) is a transcription factor that belongs to the CCAAT/Enhancer binding protein family. CEBPD is thought to be a potent tumor suppressor, and its expression is downregulated in several cancers, including breast cancer, leukemia, cervical cancer and hepatocellular carcinoma. Strong CEBPD activation could strengthen the death of cancer cells. Therefore, activating CEBPD expression in cancer cells could be a strategy for cancer therapy. Sorafenib is currently the only treatment proven to extend the survival of patients with advanced hepatocellular carcinoma (HCC). Autophagy, a conserved intracellular degradation process, is dysregulated and involved in HCC development. Accumulated evidence suggested that AMPactivated protein kinase (AMPK) is an upstream activator of autophagy and could be suppressed in cancer cells. However, the association of AMPK and autophagy with hepatocarcinoma resistance in response to sorafenib remains less well characterized. Hep3B cells were intrinsically more resistant to sorafenib than Huh7 cells. High activity of epidermal growth factor receptor (EGFR) and low autophagic responsiveness might determine the primary resistance of Hep3B cells to sorafenib. CEBPD was responsive to metformin and promoted autophagic cell death through AMPK activation. Furthermore, metformin could improve the sensitivity of Hep3B cells to sorafenib. Taken together, metformin-induced AMPK activation should be an attractive strategy for the improvement of the efficacy of sorafenib, and help to develop personalized medicine strategies for HCC patients.
1. Llovet, J.M. and M. Beaugrand, Hepatocellular carcinoma: present status and future prospects. J Hepatol, 2003. 38 Suppl 1: p. S136-49.
2. Fan, J.G. and G.C. Farrell, Epidemiology of non-alcoholic fatty liver disease in China. J Hepatol, 2009. 50(1): p. 204-10.
3. Park, E.J., et al., Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 2010. 140(2): p. 197-208.
4. Cao, J., et al., Epidermal growth factor receptor as a target for anti-cancer agent design. Anticancer Agents Med Chem, 2010. 10(6): p. 491-503.
5. El-Serag, H.B. and K.L. Rudolph, Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007. 132(7): p. 2557-76.
6. Sherman, M., Epidemiology of hepatocellular carcinoma. Oncology, 2010. 78 Suppl 1: p. 7-10.
7. Dutkowski, P., et al., Current and future trends in liver transplantation in Europe. Gastroenterology, 2010. 138(3): p. 802-9.e1-4.
8. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.
9. Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34.
10. Chappell, W.H., et al., Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2011. 2(3): p. 135-64.
11. Samant, R.S. and L.A. Shevde, Recent advances in anti-angiogenic therapy of cancer. Oncotarget, 2011. 2(3): p. 122-34.
12. Cervello, M., et al., Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget, 2012. 3(3): p. 236-60.
13. O'Connor, R., et al., Drug resistance in cancer - searching for mechanisms, markers and therapeutic agents. Expert Opin Drug Metab Toxicol, 2007. 3(6): p. 805-17.
14. Liu, L., et al., Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res, 2006. 66(24): p. 11851-8.
15. Blivet-Van Eggelpoel, M.J., et al., Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J Hepatol, 2012. 57(1): p. 108-15.
16. Ohsumi, Y., Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol, 2001. 2(3): p. 211-6.
17. Nair, U., et al., A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy, 2012. 8(5): p. 780-93.
18. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo j, 2000. 19(21): p. 5720-8.
19. Johansen, T. and T. Lamark, Selective autophagy mediated by autophagic adapter proteins. Autophagy, 2011. 7(3): p. 279-96.
20. Wang, Z., et al., Autophagy: A novel therapeutic target for hepatocarcinoma (Review). Oncol Lett, 2014. 7(5): p. 1345-1351.
21. Gozuacik, D. and A. Kimchi, Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004. 23(16): p. 2891-906.
22. Park, M.A., et al., Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in gastrointestinal tumor cells. Mol Cancer Ther, 2010. 9(8): p. 2220-31.
23. Fischer, T.D., et al., Role of autophagy in differential sensitivity of hepatocarcinoma cells to sorafenib. World J Hepatol, 2014. 6(10): p. 752-8.
24. Hardie, D.G., D. Carling, and M. Carlson, The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem, 1998. 67: p. 821-55.
25. Jones, R.G. and C.B. Thompson, Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev, 2009. 23(5): p. 537-48.
26. Motoshima, H., et al., AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol, 2006. 574(Pt 1): p. 63-71.
27. Hardie, D.G., Molecular Pathways: Is AMPK a Friend or a Foe in Cancer? Clin Cancer Res, 2015. 21(17): p. 3836-40.
28. Zheng, L., et al., Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clin Cancer Res, 2013. 19(19): p. 5372-80.
29. Nerstedt, A., et al., Pharmacological activation of AMPK suppresses inflammatory response evoked by IL-6 signalling in mouse liver and in human hepatocytes. Mol Cell Endocrinol, 2013. 375(1-2): p. 68-78.
30. Sui, X., et al., Metformin: A Novel but Controversial Drug in Cancer Prevention and Treatment. Mol Pharm, 2015. 12(11): p. 3783-91.
31. Qu, Z., et al., In vitro and in vivo antitumoral action of metformin on hepatocellular carcinoma. Hepatol Res, 2012. 42(9): p. 922-33.
32. Chen, H.P., et al., Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut, 2013. 62(4): p. 606-15.
33. Pernicova, I. and M. Korbonits, Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol, 2014. 10(3): p. 143-56.
34. Kim, I. and Y.Y. He, Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy. Front Oncol, 2013. 3: p. 175.
35. Tomic, T., et al., Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis, 2011. 2: p. e199.
36. Shi, W.Y., et al., Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis, 2012. 3: p. e275.
37. Tsai, H.H., et al., Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway. Oncotarget, 2017. 8(8): p. 13832-13845.
38. Jiralerspong, S., et al., Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol, 2009. 27(20): p. 3297-302.
39. Rocha, G.Z., et al., Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res, 2011. 17(12): p. 3993-4005.
40. Ramji, D.P. and P. Foka, CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J, 2002. 365(Pt 3): p. 561-75.
41. Hurst, H.C., Transcription factors 1: bZIP proteins. Protein Profile, 1995. 2(2): p. 101-68.
42. Osada, S., et al., DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. J Biol Chem, 1996. 271(7): p. 3891-6.
43. Kinoshita, S., S. Akira, and T. Kishimoto, A member of the C/EBP family, NF-IL6 beta, forms a heterodimer and transcriptionally synergizes with NF-IL6. Proc Natl Acad Sci U S A, 1992. 89(4): p. 1473-6.
44. Johnson, P.F., Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J Cell Sci, 2005. 118(Pt 12): p. 2545-55.
45. Wang, W.L., et al., Sumoylation of LAP1 is involved in the HDAC4-mediated repression of COX-2 transcription. Nucleic Acids Res, 2008. 36(19): p. 6066-79.
46. Sivko, G.S. and J.W. DeWille, CCAAT/Enhancer binding protein delta (c/EBPdelta) regulation and expression in human mammary epithelial cells: I. "Loss of function" alterations in the c/EBPdelta growth inhibitory pathway in breast cancer cell lines. J Cell Biochem, 2004. 93(4): p. 830-43.
47. Agrawal, S., et al., The C/EBPdelta tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood, 2007. 109(9): p. 3895-905.
48. Pan, Y.C., et al., CEBPD reverses RB/E2F1-mediated gene repression and participates in HMDB-induced apoptosis of cancer cells. Clin Cancer Res, 2010. 16(23): p. 5770-80.
49. Ko, C.Y., et al., Epigenetic silencing of CCAAT/enhancer-binding protein delta activity by YY1/polycomb group/DNA methyltransferase complex. J Biol Chem, 2008. 283(45): p. 30919-32.
50. Chuang, C.H., et al., The combination of the prodrugs perforin-CEBPD and perforin-granzyme B efficiently enhances the activation of caspase signaling and kills prostate cancer. Cell Death Dis, 2014. 5: p. e1220.
51. Wang, J.M., J.T. Tseng, and W.C. Chang, Induction of human NF-IL6beta by epidermal growth factor is mediated through the p38 signaling pathway and cAMP response element-binding protein activation in A431 cells. Mol Biol Cell, 2005. 16(7): p. 3365-76.
52. Bracken, A.P., et al., EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J, 2003. 22(20): p. 5323-35.
53. Weinmann, A.S., et al., Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol, 2001. 21(20): p. 6820-32.
54. Lai, P.H., et al., HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. Biochim Biophys Acta, 2008. 1783(10): p. 1803-14.
55. Qu, X., et al., Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 2003. 112(12): p. 1809-20.
56. Liang, C., et al., Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol, 2006. 8(7): p. 688-99.
57. Takamura, A., et al., Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 2011. 25(8): p. 795-800.
58. Luo, Z., M. Zang, and W. Guo, AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol, 2010. 6(3): p. 457-70.
59. Donadon, V., et al., Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int, 2010. 30(5): p. 750-8.
60. Evans, J.M., et al., Metformin and reduced risk of cancer in diabetic patients. Bmj, 2005. 330(7503): p. 1304-5.
61. Libby, G., et al., New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care, 2009. 32(9): p. 1620-5.
62. Chan, C.H., et al., The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell, 2012. 149(5): p. 1098-111.
63. Tang, D., G.S. Sivko, and J.W. DeWille, Promoter methylation reduces C/EBPdelta (CEBPD) gene expression in the SUM-52PE human breast cancer cell line and in primary breast tumors. Breast Cancer Res Treat, 2006. 95(2): p. 161-70.
64. Kudo, M., et al., Transcription suppression of peroxisome proliferator-activated receptor gamma2 gene expression by tumor necrosis factor alpha via an inhibition of CCAAT/ enhancer-binding protein delta during the early stage of adipocyte differentiation. Endocrinology, 2004. 145(11): p. 4948-56.
65. Chang, W., et al., Interactions between CCAAT enhancer binding protein delta and estrogen receptor alpha control insulin-like growth factor I (igf1) and estrogen receptor-dependent gene expression in osteoblasts. Gene, 2005. 345(2): p. 225-35.
66. Hu, Y., et al., Activation of p38 mitogen-activated protein kinase is required for osteoblast differentiation. Endocrinology, 2003. 144(5): p. 2068-74.
67. Obata, T., G.E. Brown, and M.B. Yaffe, MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med, 2000. 28(4 Suppl): p. N67-77.
68. Hour, T.C., et al., Transcriptional up-regulation of SOD1 by CEBPD: a potential target for cisplatin resistant human urothelial carcinoma cells. Biochem Pharmacol, 2010. 80(3): p. 325-34.
69. Boronkai, A., et al., Potentiation of paclitaxel-induced apoptosis by galectin-13 overexpression via activation of Ask-1-p38-MAP kinase and JNK/SAPK pathways and suppression of Akt and ERK1/2 activation in U-937 human macrophage cells. Eur J Cell Biol, 2009. 88(12): p. 753-63.
70. Koike, K., et al., Combination of 5-FU and IFNalpha enhances IFN signaling pathway and caspase-8 activity, resulting in marked apoptosis in hepatoma cell lines. Int J Oncol, 2006. 29(5): p. 1253-61.
71. Lioni, M., et al., Bortezomib induces apoptosis in esophageal squamous cell carcinoma cells through activation of the p38 mitogen-activated protein kinase pathway. Mol Cancer Ther, 2008. 7(9): p. 2866-75.
72. Yang, H., et al., Expression and activity of C/EBPbeta and delta are upregulated by dexamethasone in skeletal muscle. J Cell Physiol, 2005. 204(1): p. 219-26.
73. Cui, M., et al., 5-Aza-2'-deoxycytidine is a potent inhibitor of DNA methyltransferase 3B and induces apoptosis in human endometrial cancer cell lines with the up-regulation of hMLH1. Med Oncol, 2010. 27(2): p. 278-85.
74. Alsayed, Y., et al., Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. J Biol Chem, 2001. 276(6): p. 4012-9.
75. Pan, M.H., et al., Induction of apoptosis by hydroxydibenzoylmethane through coordinative modulation of cyclin D3, Bcl-X(L), and Bax, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells. J Agric Food Chem, 2003. 51(14): p. 3977-84.
76. Pan, M.H., et al., Induction of apoptosis by 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione through reactive oxygen species production, GADD153 expression, and caspases activation in human epidermoid carcinoma cells. J Agric Food Chem, 2005. 53(23): p. 9039-49.
77. Venturelli, S., et al., Epigenetic combination therapy as a tumor-selective treatment approach for hepatocellular carcinoma. Cancer, 2007. 109(10): p. 2132-41.
78. Pieretti-Vanmarcke, R., et al., Mullerian Inhibiting Substance enhances subclinical doses of chemotherapeutic agents to inhibit human and mouse ovarian cancer. Proc Natl Acad Sci U S A, 2006. 103(46): p. 17426-31.
79. Zou, M., et al., Beclin 1-mediated autophagy in hepatocellular carcinoma cells: implication in anticancer efficiency of oroxylin A via inhibition of mTOR signaling. Cell Signal, 2012. 24(8): p. 1722-32.
80. Kotsafti, A., et al., Autophagy and apoptosis-related genes in chronic liver disease and hepatocellular carcinoma. BMC Gastroenterol, 2012. 12: p. 118.
81. Chang, Y., et al., miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology, 2012. 143(1): p. 177-87.e8.
82. Yang, X., et al., Metformin sensitizes hepatocellular carcinoma to arsenic trioxide-induced apoptosis by downregulating Bcl2 expression. Tumour Biol, 2014.
83. Amaravadi, R.K., Autophagy-induced tumor dormancy in ovarian cancer. J Clin Invest, 2008. 118(12): p. 3837-40.
84. Tsujimoto, Y. and S. Shimizu, Another way to die: autophagic programmed cell death. Cell Death Differ, 2005. 12 Suppl 2: p. 1528-34.
85. Law, B.K., Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol, 2005. 56(1): p. 47-60.
86. Wu, L., et al., Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS One, 2013. 8(5): p. e63799.
87. Lonardo, A., et al., Diagnosis and management of cardiovascular risk in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol, 2014: p. 1-22.
88. Calvisi, D.F., et al., Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology, 2006. 130(4): p. 1117-28.
89. Lee, S.A., et al., Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis. Hepatology, 2010. 52(2): p. 506-17.
90. Ezzoukhry, Z., et al., EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer, 2012. 131(12): p. 2961-9.
91. Esteve-Puig, R., et al., Uncoupling of the LKB1-AMPKalpha energy sensor pathway by growth factors and oncogenic BRAF. PLoS One, 2009. 4(3): p. e4771.
92. Li, C.F., et al., HMDB and 5-AzadC Combination Reverses Tumor Suppressor CCAAT/Enhancer-Binding Protein Delta to Strengthen the Death of Liver Cancer Cells. Mol Cancer Ther, 2015. 14(11): p. 2623-33.
93. Ko, C.Y., W.C. Chang, and J.M. Wang, Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci, 2015. 22: p. 6.
94. Saito, T., et al., Metformin, a diabetes drug, eliminates tumor-initiating hepatocellular carcinoma cells. PLoS One, 2013. 8(7): p. e70010.
95. Kuczynski, E.A., et al., Effects of Sorafenib Dose on Acquired Reversible Resistance and Toxicity in Hepatocellular Carcinoma. Cancer Res, 2015. 75(12): p. 2510-9.
96. O'Byrne, K.J. and A.G. Dalgleish, Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer, 2001. 85(4): p. 473-83.
97. Bollrath, J. and F.R. Greten, IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep, 2009. 10(12): p. 1314-9.
98. Gutierrez, S., et al., CCAAT/enhancer-binding proteins (C/EBP) beta and delta activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. J Biol Chem, 2002. 277(2): p. 1316-23.
99. Ikezoe, T., et al., CCAAT/enhancer-binding protein delta: a molecular target of 1,25-dihydroxyvitamin D3 in androgen-responsive prostate cancer LNCaP cells. Cancer Res, 2005. 65(11): p. 4762-8.
100. Hsiao, Y.W., et al., CCAAT/enhancer binding protein delta in macrophages contributes to immunosuppression and inhibits phagocytosis in nasopharyngeal carcinoma. Sci Signal, 2013. 6(284): p. ra59.
101. Ikeyama, S., et al., Expression of the pro-apoptotic gene gadd153/chop is elevated in liver with aging and sensitizes cells to oxidant injury. J Biol Chem, 2003. 278(19): p. 16726-31.
102. Ikuzawa, M., et al., Expression of CCAAT/enhancer binding protein delta is closely associated with degeneration of surface mucous cells of larval stomach during the metamorphosis of Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol, 2005. 140(3): p. 505-11.
103. Luqman, S. and J.M. Pezzuto, NFkappaB: a promising target for natural products in cancer chemoprevention. Phytother Res, 2010. 24(7): p. 949-63.
104. Leroy, O., et al., Brain-specific change in alternative splicing of Tau exon 6 in myotonic dystrophy type 1. Biochim Biophys Acta, 2006. 1762(4): p. 460-7.
105. Balamurugan, K., et al., FBXW7alpha attenuates inflammatory signalling by downregulating C/EBPdelta and its target gene Tlr4. Nat Commun, 2013. 4: p. 1662.
106. Hayden, A., et al., S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Res Treat, 2011. 127(1): p. 109-19.
107. Chang, L.H., et al., Role of macrophage CCAAT/enhancer binding protein delta in the pathogenesis of rheumatoid arthritis in collagen-induced arthritic mice. PLoS One, 2012. 7(9): p. e45378.
108. Damia, G. and M. D'Incalci, Genetic instability influences drug response in cancer cells. Curr Drug Targets, 2010. 11(10): p. 1317-24.
109. Katayama, H. and S. Sen, Aurora kinase inhibitors as anticancer molecules. Biochim Biophys Acta, 2010. 1799(10-12): p. 829-39.
110. Clodfelter, J.E., B.G. M, and K. Drotschmann, MSH2 missense mutations alter cisplatin cytotoxicity and promote cisplatin-induced genome instability. Nucleic Acids Res, 2005. 33(10): p. 3323-30.
111. Bjorkoy, G., et al., p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 2005. 171(4): p. 603-14.
112. Lee, Y.J., et al., The autophagy-related marker LC3 can predict prognosis in human hepatocellular carcinoma. PLoS One, 2013. 8(11): p. e81540.
113. Lim, S., et al., Hepatitis B viral load predicts survival in hepatocellular carcinoma patients treated with sorafenib. J Gastroenterol Hepatol, 2015. 30(6): p. 1024-31.
114. Jackson, R., et al., Impact of Viral Status on Survival in Patients Receiving Sorafenib for Advanced Hepatocellular Cancer: A Meta-Analysis of Randomized Phase III Trials. J Clin Oncol, 2017. 35(6): p. 622-628.
115. Philip, P.A., et al., Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol, 2005. 23(27): p. 6657-63.
116. Thomas, M.B., et al., Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer, 2007. 110(5): p. 1059-67.
117. Finn, R.S., Emerging targeted strategies in advanced hepatocellular carcinoma. Semin Liver Dis, 2013. 33 Suppl 1: p. S11-9.
118. Abstracts of the 37th ESMO (European Society for Medical Oncology) Congress. September 28-October 2, 2012. Vienna, Austria. Ann Oncol, 2012. 23 Suppl 9: p. ix7-608.
119. Marino, G., et al., Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem, 2007. 282(25): p. 18573-83.
120. Inami, Y., et al., Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol, 2011. 193(2): p. 275-84.
121. Maione, P., et al., Combining targeted therapies and drugs with multiple targets in the treatment of NSCLC. Oncologist, 2006. 11(3): p. 274-84.
122. Tai, W.T., et al., Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis, 2013. 4: p. e485.
123. Ito, Y., et al., Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer, 2001. 84(10): p. 1377-83.
124. Buckley, A.F., et al., Epidermal growth factor receptor expression and gene copy number in conventional hepatocellular carcinoma. Am J Clin Pathol, 2008. 129(2): p. 245-51.
125. Nyati, M.K., et al., Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer, 2006. 6(11): p. 876-85.
126. Gronich, N. and G. Rennert, Beyond aspirin-cancer prevention with statins, metformin and bisphosphonates. Nat Rev Clin Oncol, 2013. 10(11): p. 625-42.
127. Feng, Y., et al., Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis, 2014. 5: p. e1088.
128. Fryer, L.G., A. Parbu-Patel, and D. Carling, The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem, 2002. 277(28): p. 25226-32.
129. LeBrasseur, N.K., et al., Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab, 2006. 291(1): p. E175-81.
130. Saha, A.K., et al., Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem Biophys Res Commun, 2004. 314(2): p. 580-5.
131. Baggio, L.L. and D.J. Drucker, Harnessing the therapeutic potential of glucagon-like peptide-1: a critical review. Treat Endocrinol, 2002. 1(2): p. 117-25.
132. Svegliati-Baroni, G., et al., Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int, 2011. 31(9): p. 1285-97.
133. Lee, J., et al., Exendin-4 improves steatohepatitis by increasing Sirt1 expression in high-fat diet-induced obese C57BL/6J mice. PLoS One, 2012. 7(2): p. e31394.
134. Steinberg, G.R. and B.E. Kemp, AMPK in Health and Disease. Physiol Rev, 2009. 89(3): p. 1025-78.
135. Moreno, D., et al., A769662, a novel activator of AMP-activated protein kinase, inhibits non-proteolytic components of the 26S proteasome by an AMPK-independent mechanism. FEBS Lett, 2008. 582(17): p. 2650-4.
136. Xiao, B., et al., Structural basis of AMPK regulation by small molecule activators. Nat Commun, 2013. 4: p. 3017.
137. Yang, Q., et al., AMPK/alpha-Ketoglutarate Axis Dynamically Mediates DNA Demethylation in the Prdm16 Promoter and Brown Adipogenesis. Cell Metab, 2016. 24(4): p. 542-554.
138. Wu, W., et al., AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine. Sci Rep, 2017. 7: p. 41606.
139. Balamurugan, K. and E. Sterneck, The Many Faces of C/EBPδ and their Relevance for Inflammation and Cancer. International Journal of Biological Sciences, 2013. 9(9): p. 917-933.