簡易檢索 / 詳目顯示

研究生: 蔡宗志
Tsai, Tsung-Chih
論文名稱: 以情境式恐懼制約模式解析幼年記憶形成與遠程記憶提取機制
Deciphering the mechanisms of childhood memory formation and remote memory retrieval with a contextual fear conditioning model
指導教授: 許桂森
Hsu, Kuei-Sen
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 95
中文關鍵詞: 幼年健忘症長期增益效應海馬迴顆粒狀後壓皮質遠程情境恐懼記憶體取
外文關鍵詞: childhood amnesia, long-term potentiation, protein phosphatase 2B, hippocampus, granular retrosplenial cortex, CA1, remote contextual fear memory retrieval
相關次數: 點閱:106下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然遺忘是一種記憶修剪及簡化的方式,以利於長期記憶的儲存。研究記憶如何長期儲存,是一個相當熱門的研究主題 ,其中幼年健忘為一種自然遺忘的模式,為一種研究遠程記憶機制之重要平台。目前文獻上有數個假說用來解釋幼年情境式記憶在成年時無法被提取的原因,但仍未達共識。大腦中海馬迴在情境式記憶之學習中,扮演著關鍵角色。而後壓皮質則與遠程情境式記憶提取有關,與海馬迴有密不可分的相互連結。然而,海馬迴與後壓皮質網絡在幼年健忘及遠程記憶提取中的關聯性則尚未釐清。
    為了研究幼年的海馬迴在記憶學習時參與的分子機轉,我們首先確認幼年鼠 (出生後20日)相較於成鼠 (出生後60日)表現長期記憶缺陷於物件位置記憶與情境式恐懼記憶之作業。同時,在低強度學習條件下,幼年鼠海馬迴CA1的神經興奮度低於成年鼠。藉由電生理,幼年鼠的Schaffer Collateral-CA1 突觸的基礎興奮性突觸傳導與早期長期增益現象皆顯著低於成年鼠。反之,幼年鼠則較容易去增益現象。在神經突觸蛋白質的表現量上,幼年鼠海馬迴CA1的NMDA受體的次體GluN2B、PKMζ和PP2B都顯著高於成年鼠。進一步,我們觀察到CaMKII之Thr286自體磷酸化位點、GluA1之Ser831磷酸化位點,以及PKMζ生合成都會在維持早期長期增益現象出現。在單一次高頻電刺激的條件下,幼年鼠都顯著低於成年鼠。再者,我們發現在幼年鼠給予藥物阻斷NMDA受體的次體GluN2B或PP2B均能有效地改善早期長期增益現象及長期記憶的表現。在神經迴路的研究上,我們也發現海馬迴會投射至後壓皮質,並於遠程情境式記憶提取時提高神經活性在顆粒狀後壓皮質、非顆粒狀後壓皮質、基底外側杏仁核、齒狀迴、外側內嗅皮質與後鼻皮質。再者,透過活化幼年記憶的後壓皮質印痕細胞,可以維持記憶至兩週之久。這代表後壓皮質在遠程記憶有重要角色。
    為了研究神經迴路於後壓皮質分區在遠程記憶提取之角色,我們使用順向與逆向的病毒標定法。我們確認小鼠的顆粒狀後壓皮質的興奮性神經從第五層投射至海馬迴背側CA1與非顆粒狀後壓皮質的表層。我們發現化學與光遺傳學抑制顆粒狀後壓皮質至CA1路徑,而非透過顆粒狀後壓皮質至非顆粒狀後壓皮質路徑,則有選擇性參與遠程記憶提取。藉由這一系列的研究,我們提供了早期長期增益效應維持發育不成熟與後壓皮質印痕細胞是與幼年健忘之發源有關性。我們也發現了一個顆粒狀後壓皮質參與遠程恐懼記憶透過至CA1之路徑。本研究,我們提出了一個幼年健忘模式可能是合適的動物模式去研究遺忘跟遠程記憶之機轉。

    Natural forgetting is a process which shapes and simplifies our memory for long-term storage. To study the mechnism for permanent memory saving, we examined childhood amensia (CA) with the property of natural forgetting to clarify the mechanism of remote memory. Several hypotheses have been raised to explain mechanisms underlying the phenomenon that episodic memories acquired during infancy or early childhood cannot be recalled in adult. According to previous study, the episodic memory formation initially requires hippocampus for acquisition and gradaully transfer to neocortex for remote memory storage. Retrosplenial cortex (RSC) is a neocortex area densely interconnected with hippocampus and contributes to the remote contextual fear memory (CFM) retrieval.
    Thus, we aim to study molecular bases contributes to childhood memory acquisition in hippocampus and the circuit mechanisms through the subdivisions of RSC [granular (RSG) and agranular retrosplenial area (RSA)] involved in remote memory retrieval for the better understanding of permanent memory saving.
    To investigate molecular mechanisms for childhood memory acquisition in hippocampus, we first confirmed that juvenile [postnatal day 20 (P20)] mice showed deficits in long-term memory retention compared to adult (P60) mice by using object-location memory (OLM) and contextual fear conditioning (CFC) tasks. Meanwhile, the neuronal excitability of hippocampal CA1 was significant decreased in P20 than P60 mice after weak CFC training paradigm. By electrophysiology approach, P20 mice was significantly lower in basal transmission and early-phase long-term potentiation (E-LTP) at Schaffer collateral-CA1 synapses, compared to P60 mice. Conversely, P20 mice have a greater susceptibility to induce time-dependent reversal of LTP than P60 mice by low-frequency afferent stimulation. In protein expression levels, the GluN2B subunit of N-methyl-D-aspartate receptors (NMDARs), protein kinase M zeta(PKMzeta) and protein phosphatase 2B (PP2B) were significantly increased in P20 than P60 mice in hippocampal CA1 region. Furthermore, we observed that the phosphorylation of calmodulin-dependent protein kinase II alpha (CaMKIIalpha) at Thr286, GluA1 phosphorylation at Ser831 and the protein levels of PKMzeta biosynthesis occurred during the ensuing maintenance of E-LTP were significantly lower after single train of high-frequency stimulation (HFS) in P20 than P60 mice. Moreover, we found that pharmacological blockade of GluN2B-containing NMDARs or PP2B significantly rescued impairment of E-LTP and long-term memory in P20 mice.
    To study whether the RSC contribute to childhood memory retrieval, we found that hippocampus formation sends the projection to RSC and increased neuronal activity in RSG, RSA, basal lateral amygdala (BLA), dentate gyrus (DG), lateral enterhinal cortex (LEnt) and postrihinal cortex (POR) after remote CFM. Moreover, reactivation of the childhood memory engram in the RSG can remind and maintain the memory after 2 weeks by HFS protocol of optogenetic stimulation. It may exhibit the important role of RSG in remote memory. To explore the neuronal circuitry of RSC subdivisions for remote memory retrieval, our results in the use of anterograde and retrograde viral tracing approaches identified the layer V of RSG excitatory projections to the dorsal CA1 and the RSA superficial layers in mice. Chemogenetic or optogenetic silencing exhibits the RSG to CA pathway contributes to the remote CFM retrieval, but not the RSG to RSA. By series of experiments, we provide evidence to know the developmental immaturity of the E-LTP maintenance and the engram of RSG are related to the occurrence of CA. We also indentified remote CFM retrieval is required RSG, and provide circuit evidence that direct RSG to CA1 projection contribute to the remote CFM retrieval. In this study, we raise the possibility that the CA is an appropriated animal model to further investigate the mechanisms of forgetting and remote memory.

    Table of Contents Abstract in Chinese I Abstract in English III Acknowledgements V Table of Contents VII Table of Figures X Table of Lists XI Abbreviations XII I. Introduction 1 1.1 Memory and forgetting 1 1.2 Infantile amnesia and childhood amnesia 1 1.3 Cellular and molecular mechanisms of childhood memory acquisition 2 1.4 Molecular mechanisms of LTP 2 1.5 Remote memory retrieval in neocortex 3 1.6 Subdivisions of RSC and their connectivity 4 1.7 Contextual fear memories in RSC 4 1.8 Memory trace and engrams in RSC 5 1.9 Hypothesis and specific aims 6 II. Materials and Methods 7 2.1 Animals 7 2.2 Behavior tasks 7 2.2.1 Object-location memory (OLM) task 7 2.2.2 Contextual fear conditioning (CFC) task 8 2.3 Electrophysiology and slice preparations 8 2.3.1 Acute slice preparations 8 2.3.2 Extracellular field potential recordings in acute brain slices 9 2.3.3 Whole-cell patch-clamp recordings and photostimulation in acute brain slices 10 2.4 Western blotting 11 2.5 Immunofluorescence 12 2.6 Cannula implantation and drug injection 13 2.7 Recombinant AAV, viral injections and gene manipulation 14 2.7.1 Recombinant AAV vector production 14 2.7.2 Virus injections 14 2.7.3 Chemogenetic manipulations 14 2.7.4 Optogenetic stimulation 15 2.7.5 Anterograde and retrograde tracing 16 2.7.6 Monosynaptic circuit tracing with EnvA-pseudotyped RVdG 16 2.8 Statistical analysis 17 III. Results 18 3.1 Juvenile and adult mice reveal distinct memory retention 18 3.2 Juvenile and adult mice reveal distinct synaptic transmission and plasticity 19 3.3 Juvenile and adult mice reveal distinct expression profiles of protein kinases and phosphatases 20 3.4 Depriving GluN2B-containing NMDAR or protein phosphatase activities restores the deficit of E-LTP in juvenile mice 21 3.5 Pharmacological blockade of GluN2B-containing NMDAR or PP2B restores the performance of childhood memory persistence in juvenile mice 21 3.6 The RSC participates in the acquisition and retrieval of recent and remote CFM in adult mice 22 3.7 Chemogenetic inhibition of the RSG neurons impairs remote CFM retrieval in adult mice 23 3.8 Chemogenetic inhibition of the RSG excitatory neurons impairs remote CFM retrieval in adult mice 24 3.9 Chemogenetic inhibition of the RSG inhibitory neurons impairs remote CFM retrieval in adult mice 25 3.10 The RSG directly sends to the dorsal CA1 and the RSA in adult mice 27 3.11 The RSG→CA1 pathway participates in the retrieval of remote CFM in adult mice 27 3.12 The RSG→RSA pathway do not alter the retrieval of remote CFM in adult mice.28 3.13 RSG monosynaptic excitatory synapses directly send to CA1 neurons in adult mice 29 3.14 The phenomenon of childhood amnesia and reminder effect 30 3.15 Reactivation of RSC engram neurons not only promote the recent memory generalization in adult mice, but also enhance the remote memory retention in juvenile mice 31 IV. Discussion 33 4.1 Brain development and sexual maturation in juvenile mice of childhood amnesia 33 4.2 Protein kinases and phosphatases of E-LTP in juvenile mice 34 4.3 Developmental switch of NMDAR subunits during infancy 35 4.4 The difference of E-LTP and L-LTP in juvenile mice 36 4.5 Prospected mechanism underlying accelerated forgetting of CA model after sufficient learning 37 4.6 Dissect the subdivisions of RSG by chemogenetic and optogenetic strategies 37 4.7 Dissect the RSG→CA1 pathway by Chemogenetic and optogenetic strategies 38 4.8 How do subdivisions of the RSC communicate with each other? 39 4.9 Distinct roles between ACC and RSG in CFM 40 4.10 Reminder training and optogenetic reactivation of engram in the model of CA 40 4.11 Limitations of this study 41 V. Conclusion 44 VI. References 46 VII. Figures 55 VIII. List of key resources for the current study 90

    Akers KG, Arruda-Carvalho M, Josselyn SA, Frankland PW (2012) Ontogeny of contextual fear memory formation, specificity, and persistence in mice. Learn Mem 19:598-604.
    Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, Wheeler AL, Guskjolen A, Niibori Y, Shoji H, Ohira K, Richards BA, Miyakawa T, Josselyn SA, Frankland PW (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344:598-602.
    Alberini CM, Travaglia A. (2017) Infantile Amnesia: A Critical Period of Learning to Learn and Remember. J Neurosci 37:5783-5795.
    Albo Z, Gräff J (2018) The mysteries of remote memory. Philos Trans R Soc Lond B Biol Sci 373:20170029.
    Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22:461-469.
    Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104:5163-5168.
    Barry DN, Maguire EA (2019) Remote memory and the hippocampus: a Constructive critique. Trends Cogn Sci 23:128-142.
    Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R, Landau EM (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280:1940-1942.
    Bouton ME, Todd TP (2014) A fundamental role for context in instrumental learning and extinction. Behav Process 104:13-19.
    Burwell RD, Bucci DJ, Sanborn MR, Jutras MJ (2004) Perirhinal and postrhinal contributions to remote memory for context. J Neurosci 24:11023-11028.
    Callaghan BL, Li S, Richardson R (2013) The elusive engram: what can infantile amnesia tell us about memory? Trends Neurosci 37:47-53.
    Callaghan BL, Richardson R (2012) The effect of adverse rearing environments on persistent memories in young rats: removing the brakes on infant fear memories. Transl Psychiatry 2:e138
    Campbell BA, Jaynes J (1966) Reinstatement. Psychol Rev 73:478–480.
    Campbell BA, Spear NE (1972) Ontogeny of memory. Psychol Rev 79:215-236.
    Chari T, Griswold S, Andrews NA, Fagiolini M (2020) The stage of the estrus cycle is critical for interpretation of female mouse social interaction behavior. Front Behav Neurosci 14, 113.
    Chiou CS, Chen CC, Tsai TC, Huang CC, Chou D, Hsu KS (2016) Alleviating bone cancer-induced mechanical hypersensitivity by inhibiting neuronal activity in the anterior cingulate cortex. Anesthesiology 125:779-792.
    Chen N, Tsai TC, Hsu KS (2020). Exposure to Novelty Promotes Long-Term Contextual Fear Memory Formation in Juvenile Mice: Evidence for a Behavioral Tagging. Mol Neurobiol 1-13.
    Coelho CAO, Ferreira TL, Kramer-Soares JC, Sato JR, Oliveira MGM (2018) Network supporting contextual fear learning after dorsal hippocampal damage has increased dependence on retrosplenial cortex. PLoS Comput Biol 14:e1006207.
    Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659-1673.
    Corcoran KA, Donnan MD, Tronson NC, Guzmán YF, Gao C, Jovasevic V, Guedea AL, Radulovic J (2011) NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory. J Neurosci 31:11655-11659.
    Cowan CS, Callaghan BL, Richardson R (2016) The effects of a probiotic formulation (Lactobacillus rhamnosus and L. helveticus) on developmental trajectories of emotional learning in stressed infant rats. Transl Psychiatry 6:e823.
    Czajkowski R, Jayaprakash B, Wiltgen B, Rogerson T, Guzman-Karlsson MC, Barth AL, Trachtenberg JT, Silva AJ (2014) Encoding and storage of spatial information in the retrosplenial cortex. Proc Natl Acad Sci USA 111:8661-8666.
    Davis RL, Zhong Y (2017) The Biology of Forgetting-A Perspective. Neuron 95:490-503.
    de Sousa AF, Cowansage KK, Zutshi I, Cardozo LM, Yoo EJ, Leutgeb S, Mayford M (2019) Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proc Natl Acad Sci USA 116:8576-8581.
    DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu L, Guenthner CJ, Tessier-Lavigne M, Luo L (2019) Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci 22:460–469.
    Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo L, Xu Q, Liu R, Lu C, Chu J, Grimley JS, Krostag AR, Kaykas A, Avery MC, Rashid MS, Baek M, Jacob AL, Smith GB, Wilson DE, Kosche G, Kruglikov I, Rusielewicz T, Kotak VC, Mowery TM, Anderson SA, C llaway EM, Dasen JS, Fitzpatrick D, Fossati V, Long MA, Noggle S, Reynolds JH, Sanes DH, Rudy B, Feng G, Fishell G (2016) A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci 19:1743-1749.
    Dong Z, Han H, Li H, Bai Y, Wang W, Tu M, Peng Y, Zhou L, He W, Wu X, Tan T, Liu M, Wu X, Zhou W, Jin W, Zhang S, Sacktor TC, Li T, Song W, Wang YT (2015) Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest 125:234-247.
    Einarsson EÖ, Pors J, Nader K (2015) Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression. Neuropsychopharmacology 40:480-487.
    Ferguson MA, Lim C, Cooke D, Darby RR, Wu O, Rost NS, Corbetta M, Grafman J, Fox MD (2019) A human memory circuit derived from brain lesions causing amnesia. Nat Commun 10:3497.
    Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6:119–130.
    Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304:881-883.
    Frankland PW, Ding HK, Takahashi E, Suzuki A, Kida S, Silva AJ (2006) Stability of recent and remote contextual fear memory. Learn Mem 13:451-457.
    Frankland PW, Köhler S, Josselyn SA (2013) Hippocampal neurogenesis and forgetting. Trends Neurosci 36:497-503.
    Franklin K, Paxinos G (2008) The mouse brain in stereotaxic coordinates. 3rd edition. San Diego, Elsevier Academic Press.
    Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661-1664.
    Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, Deisseroth K (2011) Dynamics of retrieval strategies for remote memories. Cell 147:678-689.
    Guskjolen A, Kenney JW, de la Parra J, Yeung BA, Josselyn SA, Frankland PW (2018) Recovery of "Lost" Infant Memories in Mice. Curr Biol 28:2283-2290.e3.
    Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316:457-460.
    Hartley C, Lee F (2015) Sensitive Periods in Affective Development: Nonlinear Maturation of Fear Learning. Neuropsychopharmacology 40: 50–60.
    Haugland KG, Sugar J, Witter MP (2019) Development and topographical organization of projections from the hippocampus and parahippocampus to the retrosplenial cortex. Eur J Neurosci 50:1799-1819.
    Herring BE, Nicoll RA (2016) Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu Rev Physiol 78:351-365.
    Huang CC, Chou PH, Yang CH, Hsu KS (2005) Neonatal isolation accelerates the developmental switch in the signalling cascades for long-term potentiation induction. J Physiol 569:789-799.
    Huang CC, Liang YC, Hsu KS (2001) Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. J Biol Chem 276:48108-48117.
    Hussain RJ, Carpenter DO (2001) Development of synaptic responses and plasticity at the SC-CA1 and MF-CA3 synapses in rat hippocampus. Cell Mol Neurobiol 21:357-368.
    Izquierdo LA, Barros DM, Vianna MR, Coitinho A, de David Silva T, Choi H, Moletta B, Medina JH, Izquierdo I (2002) Molecular pharmacological dissection of short- and long-term memory. Cell Mol Neurobiol 22:269-287.
    Jack F, Hayne H (2010) Childhood amnesia: Empirical evidence for a two-stage phenomenon. Memory 18:831-44.
    Jiang P, Tokariev M, Aronen ET, Salonen O, Ma Y, Vuontela V, Carlson S (2014) Responsiveness and functional connectivity of the scene-sensitive retrosplenial complex in 7-11-year-old children. Brain Cogn 92C:61-72.
    Jones BF, Groenewegen HJ, Witter MP (2005) Intrinsic connections of the cingulate cortex in the rat suggest the existence of multiple functionally segregated networks. Neuroscience 133:193-207.
    Josselyn SA, Frankland PW (2012) Infantile amnesia: a neurogenic hypothesis. Learn Mem 19:423-433.
    Josselyn, S. A., Köhler, S., and Frankland, P. W. (2015). Finding the engram. Nat Rev Neurosci 16, 521-534.
    Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163-186.
    Katche C, Dorman G, Slipczuk L, Cammarota M, Medina JH (2013) Functional integrity of the retrosplenial cortex is essential for rapid consolidation and recall of fear memory. Learn Mem 20:170-173.
    Keene CS, Bucci, DJ (2008) Neurotoxic lesions of retrosplenial cortex disrupt signaled and unsignaled contextual fear conditioning. Behav Neurosci 122:1070-1077.
    Kelleher RJ 3rd, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59-73.
    Kim JH, Richardson R (2007) Immediate post-reminder injection of GABA agonist midazolam attenuates reactivation of forgotten fear in the infant rat. Behav Neurosci 121:1328-1332.
    Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, Redondo RL, Tonegawa S (2017) Engrams and circuits crucial for systems consolidation of a memory. Science 356:73-78.
    Kojima N, Sakamoto T, Endo S, Niki H (2005) Impairment of conditioned freezing to tone, but not to context, in Fyn-transgenic mice: relationship to NMDA receptor subunit 2B function. Eur J Neurosci 21:1359-1369.
    Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405:955-959.
    Leon WC, Bruno MA, Allard S, Nader K, Cuello AC (2010) Engagement of the PFC in consolidation and recall of recent spatial memory. Learn Mem 17:297-305.
    Li S, Callaghan BL, Richardson R (2014) Infantile amnesia: forgotten but not gone. Learn Mem 21, 135–139.
    Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC (2002) Protein kinase M ζ is necessary and sufficient for LTP maintenance. Nat Neurosci 5:295-296.
    Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169-182.
    Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381-385.
    Liu XB, Jones EG (1996) Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not γ-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc Natl Acad Sci USA 93:7332-7336.
    Madsen HB, Kim JH (2016) Ontogeny of memory: An update on 40 years of work on infantile amnesia. Behav Brain Res 298:4-14.
    Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5-21.
    Mayford M, Siegelbaum SA, Kandel ER (2012) Synapses and memory storage. Cold Spring Harb Perspect Biol 4:a005751.
    Meira T, Leroy F, Buss EW, Oliva A, Park J, Siegelbaum SA (2018) A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics. Nat Commun 9: 4163.
    Miller AM, Vedder LC, Law LM, Smith DM (2014) Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci 8:586.
    Miller JS, Jagielo JA, Spear NE (1991) Differential effectiveness of various prior-cuing treatments in the reactivation and maintenance of memory. J Exp Psychol Anim Behav Process 17:249-258.
    Mitchell AS, Czajkowski R, Zhang N, Jeffery K, Nelson AJD (2018) Retrosplenial cortex and its role in spatial cognition. Brain Neurosci Adv 2:2398212818757098.
    Mouri A, Noda Y, Shimizu S, Tsujimoto Y, Nabeshima T (2010) The role of cyclophilin D in learning and memory. Hippocampus 20:293-304.
    Newcombe NS, Lloyd ME, Ratliff KR (2007) Development of episodic and autobiographical memory: a cognitive neuroscience perspective. Adv Child Dev Behav 35:37-85.
    Nicoll RA, Roche KW (2013) Long-term potentiation: peeling the onion. Neuropharmacology 74:18-22.
    Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207-214.
    Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383-400.
    Piefke M, Pestinger M, Arin T, Kohl B, Kastrau F, Schnitker R, Vohn R, Weber J, Ohnhaus M, Erli HJ, Perlitz V, Paar O, Petzold ER, Flatten G (2007) The neurofunctional mechanisms of traumatic and non-traumatic memory in patients with acute PTSD following accident trauma. Neurocase 13:342-357.
    Poo MM, Pignatelli M, Ryan TJ, Tonegawa S, Bonhoeffer T, Martin KC, Rudenko A, Tsai LH, Tsien RW, Fishell G, Mullins C, Gonçalves JT, Shtrahman M, Johnston ST, Gage FH, Dan Y, Long J, Buzsáki G, Stevens C (2016) What is memory? The present state of the engram. BMC Biol 14:40.
    Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD (2009) Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci 30:877-888. Robinson S, Poorman CE, Marder TJ, Bucci DJ (2012) Identification of functional circuitry between retrosplenial and postrhinal cortices during fear conditioning. J Neurosci 32:12076-12086.
    Rodenas-Ruano A, Chávez AE, Cossio MJ, Castillo PE, Zukin RS. (2012) REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15: 1382–1390.
    Rosenbaum RS, Ziegler M, Winocur G, Grady CL, Moscovitch M (2004) "I have often walked down this street before": fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14:826-835.
    Rovee-Collier CK (1999) The Development of Infant Memory. Curr Dir Psychol Sci 8:80-85.
    Rovee-Collier CK, Sullivan MW, Enright M, Lucas D, Fagen JW (1980) Reactivation of infant memory Science 208:1159-61.
    Ryan TJ, Frankland PW (2022) Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci. doi: 10.1038/s41583-021-00548-3.
    Sachser RM, Santana F, Crestani AP, Lunardi P, Pedraza LK, Quillfeldt JA, Hardt O, Alvares Lde O (2016) Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin. Sci Rep 6:22771.
    Sacktor TC (2011) How does PKMζ maintain long-term memory? Nat Rev Neurosci 12:9-15
    Schuette SR, Fernández-Fernández D, Lamla T, Rosenbrock H, Hobson S (2016) Overexpression of protein kinase Mζ in the hippocampus enhances long-term potentiation and long-term contextual but not cued fear memory in rats. J Neurosci 36:4313-4324.
    Shenolikar S, Nairn AC (1991) Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res 23:1-121.
    Shinohara K, Hata T (2014) Post-acquisition hippocampal NMDA receptor blockade sustains retention of spatial reference memory in Morris water maze. Behav Brain Res 259:261-267.
    Sigwald EL, Bignante EA, de Olmos S, Lorenzo A (2019) Fear-context association during memory retrieval requires input from granular to dysgranular retrosplenial cortex. Neurobiol Learn Mem 163:107036.
    Smith DM, Miller AMP, Vedder LC (2018) The retrosplenial cortical role in encoding behaviorally significant cues. Behav Neurosci 132:356-365.
    Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol 5:169-177.
    Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82:797-808.
    Steinvorth S, Corkin S, Halgren E (2006) Ecphory of autobiographical memories: an fMRI study of recent and remote memory retrieval. Neuroimage 30:285-298.
    Sugar J, Witter MP, van Strien NM, Cappaert NL (2011) The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. An interactive connectome. Front Neuroinform 5:7.
    Svoboda E, McKinnon MC, Levine B (2006) The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44:2189-208.
    Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ (2014) Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84:347-354.
    Todd TP, Bucci DJ (2015) Retrosplenial cortex and long-term memory: molecules to behavior. Neural Plast 2015:414173.
    Todd TP, Fournier DI, Bucci DJ (2019) Retrosplenial cortex and its role in cue-specific learning and memory. Neurosci Biobehav Rev 107:713-728.
    Todd TP, Mehlman ML, Keene CS, DeAngeli NE, Bucci DJ (2016) Retrosplenial cortex is required for the retrieval of remote memory for auditory cues. Learn Mem 23:278-288.
    Tonegawa S, Morrissey MD, Kitamura T (2018) The role of engram cells in the systems consolidation of memory. Nat Rev Neurosci 19:485-498.
    Travaglia A, Bisaz R, Cruz E, Alberini CM. (2016) Developmental changes in plasticity, synaptic, glia and connectivity protein levels in rat dorsal hippocampus. Neurobiol Learn Mem. 135:125-138.
    Travaglia A, Bisaz R, Sweet ES, Blitzer RD, Alberini CM (2016) Infantile amnesia reflects a developmental critical period for hippocampal learning. Nat Neurosci 19:1225-1233.
    Valverde F (1998) Golgi atlas of the postnatal mouse brain. 15th edition. Chicago, Springer-Verlag.
    Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10:792-802.
    Varela C, Weiss S, Meyer R, Halassa M, Biedenkapp J, Wilson MA, Goosens KA, Bendor D (2016) Tracking the time-dependent role of the hippocampus in memory recall using DREADDs. PLoS One 11:e0154374.
    Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL (2013) PKMζ is not required for hippocampal synaptic plasticity, learning and memory. Nature 493:420-423.
    Wall NR, Wickersham IR, Cetin AH, De La Parra M, Callaway EM (2010). Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc Natl Acad Sci USA 107:21848-21853.
    Wang YT, Huang CC, Lin YS, Huang WF, Yang CY, Lee CC, Yeh CM, Hsu KS (2017) Conditional deletion of Eps8 reduces hippocampal synaptic plasticity and impairs cognitive function. Neuropharmacology 112:113-123.
    Westmark PR, Westmark CJ, Wang S, Levenson J, O'Riordan KJ, Burger C, Malter JS (2010) Pin1 and PKMζ sequentially control dendritic protein synthesis. Sci Signal 3:ra18.
    Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young JA, Callaway EM (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639-647.
    Winder DG, Sweatt JD (2001) Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat Rev Neurosci 2:461-474.
    Winocur G, Moscovitch M, Rosenbaum RS, Sekeres M (2010) A study of remote spatial memory in aged rats. Neurobiol Aging 31:143-150.
    Wirt RA, Hyman JM (2019) ACC theta improves hippocampal contextual processing during remote recall. Cell Rep 27:2313-2327.
    Yamawaki N, Corcoran KA, Guedea AL, Shepherd GMG, Radulovic J (2019a) Differential contributions of glutamatergic hippocampal→retrosplenial cortical projections to the formation and persistence of context memories. Cereb Cortex 29:2728-2736.
    Yamawaki N, Li X, Lambot L, Ren LY, Radulovic J, Shepherd GMG (2019b) Long-range inhibitory intersection of a retrosplenial thalamocortical circuit by apical tuft-targeting CA1 neurons. Nat Neurosci 22:618-626.
    Yang CH, Huang CC, Hsu KS (2012) A critical role for protein tyrosine phosphatase nonreceptor type 5 in determining individual susceptibility to develop stress-related cognitive and morphological changes. J Neurosci 32:7550-7562.
    Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081-1094.
    Yasuda H, Barth AL, Stellwagen D, Malenka RC (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6:15-16.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE