簡易檢索 / 詳目顯示

研究生: 阮茹瓊
Nguyen, Nhu Quynh
論文名稱: 纖維尺寸及退火溫度對靜電紡絲PEO纖維之結晶行為的影響
Effect of fiber size and annealing on the crystallization behavior of electrospun polyethylene oxide fibers
指導教授: 羅介聰
Lo, Tsung-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 74
中文關鍵詞: 靜電紡絲整齊排列之奈米纖維聚乙二醇受限結晶熱處理
外文關鍵詞: electrospinning, aligned nanofibers, polyethylene oxide, confined crystallization
相關次數: 點閱:73下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對於不同纖維直徑和退火溫度處理之靜電紡絲PEO奈米纖維的結晶行為進行探討。當使用靜電紡絲方法製備PEO纖維時,PEO奈米纖維的排列方向性和直徑取決於靜電紡絲參數,包含高分子溶液濃度、施加電壓大小、流速,滾筒轉速、針與收集器之間的距離、以及收集器的類型。藉由研究電紡參數,我們可以製備出排列方向一致的靜電紡絲纖維。當溶液濃度和流速增加時,纖維直徑會增加;而當針頭到收集器之間的距離、施加電壓和滾筒旋轉速度增加時,纖維直徑會減少。我們使用靜電紡絲法和滾筒收集器製備出直徑90±9、189±20和286±29nm不同直徑且排列方向一致的纖維。
    在不同熱退火溫度下,排列整齊的PEO奈米纖維和溶液塗佈所法形成之薄膜的結晶度,皆低於PEO粉末的結晶度,且奈米纖維的結晶度隨著纖維直徑的減小而增加。所有樣品的熔融溫度和晶體尺寸均會隨退火溫度和纖維尺寸的變大而增加。此外,與退火樣品相比,未退火樣品的結晶度比退火樣品小。另一方面,樣品的結晶形貌會受到不同退火溫度和纖維直徑的影響,隨著退火溫度和纖維直徑的增加,PEO粉末、溶液塗佈薄膜、和PEO奈米纖維的結晶層厚度會減小,當中以溶液塗佈薄膜的PEO結晶層厚度最厚,且PEO奈米纖維的非結晶層厚度比PEO粉末和溶液結晶薄膜的非結晶層度大。PEO奈米纖維、PEO粉末和溶液澆鑄之PEO薄膜的Herman取向函數分別為-0.4、-0.06和0.014,可以說明PEO奈米纖維中的晶體排列具有方向性,且傾向垂直於纖維軸排列,而PEO粉末和薄膜中的結晶排列方向是隨機,不具有特定沒有方向性。

    This study focuses on a detailed understanding of the crystallization behavior of electrospun polyethylene oxide (PEO) nanofibers with various fiber diameters at different annealing temperatures. When PEO fibers were prepared using electrospinning, the fiber orientation and diameters depended on the electrospunning parameters, including the polymer concentration, applied voltage, flow rate, rotating drum speed, distance between the needle and collectors, and types of a collector. These electrospinning parameters were investigated to determine the optimal parameters for further preparing aligned nanofibers. The fiber diameter increased when the solution concentration and flow rate increased, whereas the fiber diameter decreased when the distance between the needle-to-collector, applied voltage, and drum rotating speed increased. The aligned fibers with different diameters of 90±9, 189±20, and 286±29 nm were obtained by the electrospinning method with a rotating drum collector.
    The degree of crystallinity of the aligned PEO nanofibers and solution-cast film was lower than that of the PEO powder at various annealing temperatures. The degree of crystallinity of the nanofibers increased with a decrease in the fiber diameter. The melting temperature and crystallite size of all samples increased with increases in the annealing temperature and fiber diameter. Compared with the annealed samples, the degree of crystallinity of nonannealed samples was much lower than that of the annealed samples. On the other hand, lamellar morphology of all the samples varied with the annealing temperature and fiber diameter. The lamellar thickness of the PEO powder, solution-cast film, and the PEO nanofibers decreased with an increase in the annealing temperature and fiber diameter, and the lamellar thickness of the solution-cast film was the highest. The amorphous layer of the PEO nanofiber was thicker than that of the PEO powder and solution-cast film. The Hermans orientation functions of the PEO nanofibers, PEO powder, and solution-cast film were approximately -0.4, -0.06, and 0.014, respectively, suggesting that the crystals in PEO nanofibers were aligned and tended to be perpendicular to the fiber axis, whereas the crystals in the PEO powder and film were randomly oriented.

    摘要 I Abstract II Acknowledgment IV List of Contents V List of Tables VIII List of Figures and Schemes IX Abbreviation and Symbols XIII CHAPTER 1. INTRODUCTION 1 1.1 OVERVIEW 1 1.2 OBJECTIVES AND SCOPES OF STUDY 2 CHAPTER 2. LITERATURE REVIEW 3 2.1 INTRODUCTION OF CRYSTALLIZATION IN A CONFINED SPACE 3 2.1.1 Confined crystallization in block copolymers 4 2.1.2 Confined crystallization in anodic aluminum oxide nanoporous membranes 8 2.1.3 Confined crystallization in thin films, multilayers, and emulsions 13 2.2 ELECTROSPINNING 13 2.2.1 Introduction 13 2.2.2 Experimental Techniques of Electrospinning 15 2.3 CRYSTALLIZATION BEHAVIOR OF ELECTROSPUN NANOFIBERS 21 2.3.1 Crystallization Behavior of Single Electrospun Nanofibers 21 2.3.2 Crystallization Behavior of Coaxial Electrospun Nanofibers 24 2.4. SUMMARY 25 CHAPTER 3. EXPERIMENTAL 27 3.1. MATERIALS 27 3.2. EQUIPMENTS 27 3.2.1 Voltage power supply 27 3.2.2 Syringe pump 28 3.2.3 Vacuum oven 28 3.2.4 Scanning electron microscopy 28 3.2.5 Differential scanning calorimetry 29 3.3. PEO NANOFIBER FABRICATION 29 3.4. CHARACTERIZATION METHODS 31 3.4.1 Scanning electron microscopy 31 3.4.2 Differential scanning calorimetry 31 3.4.3 X-ray Scattering measurements 32 CHAPTER 4. RESULTS AND DISCUSSION 34 4.1. ELECTROSPINNING OF PEO NANOFIBERS 34 4.1.1. Effect of polymer concentration on the morphology of PEO nanofibers 34 4.1.2. Effect of flow rate on the morphology of PEO nanofibers 36 4.1.3. Effect of the needle-to-collector distance on the morphology of PEO nanofibers 38 4.1.4. Effect of voltage on the morphology of PEO nanofibers 40 4.1.5. Effect of the drum rotating speed on the morphology of PEO nanofibers 42 4.2. THERMAL BEHAVIOR 44 4.2.1. Morphological properties of aligned electrospun PEO fibers 44 4.2.2. Fiber Orientation 44 4.2.3. The effect of annealing temperature 45 4.2.4. The effect of fiber size 46 4.3. STRUCTURAL CHARACTERIZATION 51 4.3.1. Lamellar Morphology 51 4.3.2. Crystal orientation of electrospun PEO nanofibers 55 4.3.3. Hermans orientation function 56 4.4. SUMMARY 57 CHAPTER 5. CONCLUSIONS 67 REFERENCES 69

    [1]. Samanta, P.; Liu, C. L.; Nanda, B.; Chen, H. L., Crystallization of Polymers in Multiphase Polymer Systems: Crystallization of Polymers in Confined Space, The Journal of Materials Science 2017, 1, 367-431.
    [2]. Zhu, L.; Mimnaugh, B. R.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F. J.; Liu, L. Z., Hard and soft confinement effects on polymer crystallization in microphase separated cylinder forming PEO-b-PS / PS blends, J. Polymer 2001, 42, (21), 9121-9131.
    [3]. Sun, Y. S.; Chung, T. M.; Li, Y. J.; Ho, R. M.; Ko, B. J.; Jeng, U. S.; Lotz, B., Crystalline polymers in nanoscale 1D spatial confinement. Macromolecules 2010, 43, (14), 6237-6240.
    [4]. Hsiao, M. S; Zheng, J. X; Horn, R. M. V., Poly(ethylene oxide) crystal orientation change under 1D nanoscale confinement using Polystyrene-block-poly(ethylene oxide) copolymers: confined dimension and reduced tethering density effects. Macromolecules 2009, 42, (21), 8343-8352.
    [5]. Zheng, J. X.; Xiong, H.; Cheng, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P, Onsets of tethered chain overcrowding and highly stretched brush regime via crystalline-amorphous deblock copolymers. Macromolecules 2006, 39, (2), 641-650.
    [6]. Shin, K.; Woo, E.; Jeong, Y. G.; Kim, C.; Huh, J.; Kim, K. W., Crystalline structure, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules 2007, 40, (18), 6617-6623.
    [7]. Michell, R. M; Blaszczyk-Lezak, I.; Mijangos, C.; Mu¨ller, A. J., Confinement effects on polymer crystallization: from droplets to alumina nanopores. Polymer 2013, 54, (16), 4059-4077.
    [8]. Liu, C. L; Chen, H. L., Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels. Soft Matter 2018, 14, (26), 5461-5468.
    [9]. Chen, H. L; Hsiao, S. C.; Hasegawa, H.; Yamauchi, K.; Hashimoto, T., Microdimain-tailored crystallization kinetics of block copolymers. Macomolecules 2001, 34, (4), 671-674.
    [10]. Dai, X.; Miu, J.; Ren, Z.; Sun, X.; Yan, S., Effects of nanoporous anodic alumina oxide on the crystallization and melting behavior of poly (vinylidene fluoride). The Journal of Physical Chemistry 2016, 120, (4), 843-850.
    [11]. Schönherr, H.; Frank, C. W., Ultrathin films of poly (ethylene oxide) on oxidized silicon 2. in situ study of crystallization and melting by hot stage AFM. Macromolecules 2003, 36, (4), 1199-1208.
    [12]. Zhang, G.; Lee, P. C.; Jenkins, S.; Dooley, J.; Baer, E., The effect of confined spherulite morphology of high – density poly (ethylene) lamellar morphology. Polymer 2014, 55, (2), 663-672.
    [13]. Taden, A.; Landfester, K., Crystallization of Poly (ethylene oxide) confined in minimulsion droplets. Macromolecules 2003, 36, (11), 4037-4041.
    [14]. Vasita, R.; Katti, D., Nanofibers and their applications in tissue engineering, Int J Nanomed 2006, 1, (1), 15-30.
    [15]. Pan, M.; Yang, Lianyun.; Wang, J.; Tang, Saide., Composite Poly (vinylidene fluoride)/Polystyrene latex particles for confined crystallization in 180 nm nanospheres via emulsifier-free batch seeded emulsion polymerization. Macromolecules 2014, 47, (8), 2632-2644.
    [16]. Montenegro, R.; Landfester, K., Metastable and stable morphologies during crystallization of alkanes in miniemulsion droplets. Macromolecules 2003, 19, (15), 5996-6003.
    [17]. Tucker, N.; Stanger, J. J.; Staiger, M. P.; Razzaq, H.; & Hofman, K, The History of the Science and Technology of Electrospinning from 1600 to 1995, Journal of Engineered Fibers and Fabrics 2012, 7, (2), 63-73.
    [18]. Chinnappan, A.; Baskar, S., An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics, J. Mater. Chem. C, 2017, 5, 12657-12673
    [19]. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C., The effect of processing variables on the morphology of electrospun nanofibers and textiles, Journal of Polymer, 2001, 42, (1), 261-272.
    [20]. Doshi, J.; Reneker, D. H., Electrospinning process and application of electrospin fibers. Journal of Electrostatics 1995, 35, (2-3), 151-160.
    [21]. Sun, Y. S.; Chung, T. M.; Li, Y. J.; Ho, R. M.; Ko, B. J.; Jeng, U. S.; Lotz, B., Crystalline polymers in nanoscale 1D spatial confinement. Macromolecules 2010, 43, (14), 6237-6240.
    [22]. Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43, (16), 4403-4412.
    [23]. Bera, B., Literature Review on Eletrospinning Process (A Fascinating Fiber Fabrication Technique), Imperial Journal of Interdisciplinary Research (UIR) 2016, 2, (8), 973-984.
    [24]. Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro and nanostructure surface morphology on electrospun polymer fibers. Macromolecules 2002, 35, (22), 8456-8466.
    [25]. Matabola, K. P.; Moutloali, R. M., The influenence of electrospinning parameters on the morphology and diameter of poly (vinylidene fluoride) nanofibers-effect of sodium chloride. Journal of Materials Science 2013, 48, (16), 5475-5482.
    [26]. Liu, H.; Hsieh, Y. L., Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. Journal of Polymer Science part B: Polymer Phys 2002, 40, 2119-2129.
    [27]. Teo, W.E, Ramakrishna, S., A review on electrospinning design and nanofiber assemblies, Nanotechnology, 2006, 17 (14), 89-106.
    [28]. Luo, H.; Huang, Y.; Wang, D. S.; Shi, J., Coaxial-Electrospinning as a New Method to Study Confined Crystallization of Polymer, Journal of Polymer Science 2013, 51, (5), 376-383.
    [29]. Zhong, G.; Su, R.; Zhang, L.; Wang, K.; Li, Z.; Fong, H.; Zhu, L., Evolution of nanodroples and fractionated crystallization in thermally annealed electrsopun blend fibers of poly(vinylidene fluoride) and polysulfone, Polymer 2012, 53, (20), 4472-4480.
    [30]. Zhong, G.; Wang, K.; Zhang, L.; Li, Z. M.; Fong, H.; Zhu, L., Nanodroplet formation and exclusive homogenously nucleated crystallizationin confined electrospun immiscible polymer blendfibers of polystyreneand poly(ethylene oxide), Polymer 2011, 52, (24), 5397-5402.
    [31]. Samanta, P.; Thangapandian, V.; Singh, S.; Srivastava, R.; Nandan, B.; Liu, C. L.; Chen, H. L., Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends, Royal Society of Chemistry 2016, 12, (23), 5110-5120.
    [32]. Conie, B. R.; John, R. D, Glass transition and chain mobility in thin polymer films, Journal of Electroanalytical Chemistry 2005, 584, (1), 13-22.
    [33]. Luo, H.; Huang, Y.; Wang, D. S., Confined crystallization of POM in the CA-nanotubes fabricated by coaxial electrospinning 2013, 49, (6), 1424-1436.
    [34]. Pakravan, M.; Heuzey, M. C.; Ajji, A., Core-shell Structured PEO-Chitosan Nanofibers by Coaxial Electrospinning, Biomacromolecules 2012, 13, (2), 412-421.
    [35]. Zou, S. F.; Wang, R. Y.; Fan, B.; Xu, J. T.; Fan, Z. Q, Effect of interface and confinement size on the crystallization behavior of PLLA confined in coaxial electrospun fibers, Journal of Applied Polymer Science 2017, 135, (11), 45980.
    [36]. Zou, S. F.; Guo, X. S.; Wang, R. Y.; Fan, B.; Xu, J. T.; Fan, Z. Q, Effect of annealing-induced interfacial demixing on crystallization of PEO confined in coaxial electrospun nanofibers, Journal of Applied Polymer Science 2017, 135, (5), 45760.
    [37]. Luo, H. J.; Huang, Y.; Wang, D. S., The crystallization and crystal transition of PVDF in PAN nanotube, Polymer 2013, 54, (17), 4710-4718.
    [38]. Peng, J.; Ellingham, T.; Sabo, R.; Turng, L. S.; Clemons, C. N, Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber. Cellulose 2014, 21 (6), 4287-4298.
    [39]. Mohamed, A.; Larbi, F. B. C.; Dubault, A.; Halary, J. L., Structural study of semi-crystalline blends of poly (vinylidene fluoride) and poly (methyl methacrylate) by means of linear correlation and interface distribution functions. E-Polymers 2005, 5(1).
    [40]. Veleirinho, B.; Rei, M. F.; Lopes-DA-Silva, J. A., Solvent and concentration effects on the properties of electrospun poly (ethylene terephthalate) nanofiber mats. Journal of Polymer Science 2008, 46, (5), 460-471.
    [41]. McKee, M. G.; Wilkes, G. L.; Colby, R. H.; Long, T. E., Correlations of solution rheology with electrospun fiber formation of linea and brached polyesters. Marcomolecules 2004, 37, (5), 1760-1767.
    [42]. Shao, H.; Fang, J.; Wang, H.; Lin, T., Effect of electrospinning parameters and polymer concentrations on mechanical – to – electrical energy conversion of randomly – oriented electrospun poly (vinylidene fluoride) nanofiber mats. RSC Advances 2015, 5, (19), 14345-14350.
    [43]. Boland, E.; Wnek, G.; Simpson, D.; Pawlowski, K.; Bowlin, G., Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly (glycolic acid) electrospinning. Journal of Macromolecular Science 2001, 38, (12), 1231-1243.
    [44]. Long, Y. Z.; Yu, M.; Sun, B.; Gu, C. Z.; Fan, Z., Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chemical Society Reviews 2012, 41, (12), 4560.
    [45]. Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L, Electrospinning of collagen nanofibers. Biomacromolecules 2002, 3, (2), 232-238.
    [46]. Li, Y.; Huang, Z. M.; Lu, Y. D., Electrospinning of nylon – 6,66,1010 terpolymer. European Polymer Journal 2006, 42, 1969-1704.
    [47]. Lim, C. T.; Tan, E. P. S.; Ng, S. Y., Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Applied Physics Letters 2008, 92 (14), 141908.
    [48]. Yin, X.; Hewitt, D. R. O.; Quah, S. P.; Zheng, B.; Mattei, G. S; Khalifah, P.; Bhatia, S., Impact of stereochemistry on rheology and nanostructure of PLA-PEO-PLA triblocks: stiff gels at intermediate L/D-lactide ratios. Soft Matter 2018, 35 (14), 7255-7263.
    [49]. Mishra, S. R; Ranjith, K.; Swathi, S. K.; Ramamurthy, P. C., Nanostructured barbed wire architecturing of organic conducting material blends by electrospinning. Applied Physics Letters 2012, 100 (1), 013302.
    [50]. Lim, C. T.; Tan, E. P. S.; Ng, S. Y., Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Applied Physics Letters 2008, 92 (14), 141908.

    下載圖示 校內:2022-09-02公開
    校外:2022-09-02公開
    QR CODE