簡易檢索 / 詳目顯示

研究生: 黃婉婷
Huang, Wan-Ting
論文名稱: X光誘導修飾CORM-401的奈米粒子於核磁共振成像與一氧化碳治療的潛在應用
Development of X-ray Induced CORM-401 Modified Nanoparticles for Potential MR Imaging and CO Therapy
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 39
中文關鍵詞: 閃爍體材料放射治療一氧化碳治療CORM-401核磁共振顯影
外文關鍵詞: scintillator, X-ray excited fluorescence, carbon monoxide, CORM-401
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用X光激發之Ce摻雜的LiYF4閃爍體奈米粒子,並於材料表面修飾一氧化碳釋放分子—CORM-401。在受到X光激發後LiYF4閃爍體奈米粒子產生紫外光波段的放光,此放光可使修飾於材料表面之一氧化碳釋放分子中心金屬錳與一氧化碳斷鍵,並釋放一氧化碳氣體,所釋放之一氧化碳具有氣體治療之作用。且因實驗使用的激發光源為X射線,其本來就是治療癌症的重要手段之一,因此本研究亦可使用X光作癌症的放射治療。另外,CORM-401分子中的中心金屬錳,於釋放一氧化碳後會產生由正一價變為正二價的價數改變,此價數的改變可應用於核磁共振顯影上。因此本實驗中設計之奈米粒子可同時具有放射治療、一氧化碳治療以及核磁共振顯影的作用。

    In our study, we used Ce-doped LiYF4 scintillator nanoparticle, which emits UV light after being excited by X-ray. In addition, carbon monoxide (CO) causes mitochondrial dysfunction and induces apoptosis of cancer cells, which can be used as a means of treating tumors. Therefore, we modified CORM-401 outside of the nanoparticles, and the UV light emitted by X-ray irradiation of nanoparticles can release CO molecules from CORM-401, which can be used for the treatment of deep tumors. Moreover, after CORM-401 releases CO molecules, Mn2 + on the molecules can enhance MRI imaging. Multifunctional nanomaterials in this study can achieve deep tumor treatment and MRI imaging.

    摘要 i 英文延伸摘要(Extended Abstract) ii 誌謝 viii 目錄 ix 圖目錄 xi 表目錄 xii 第一章 緒論 1 1-1 癌症治療 1 1-1-1 放射治療 2 1-1-2 放射線破壞癌細胞之機制 3 1-2 核磁共振造影 5 1-2-1 核磁共振造影原理 5 1-2-2 核磁共振造影顯影劑(MRI contrast agent) 6 1-3 閃爍體材料 7 1-3-1 閃爍體於醫學應用 8 1-4 氣體治療 10 1-4-1 一氧化碳治療 10 1-4-2 一氧化碳釋放分子(Carbon monoxide‐releasing molecule, CORM) 11 第二章 實驗部分 13 2-1 研究動機與目的 13 2-2 實驗藥品 14 2-2-1 奈米粒子合成之相關藥品 14 2-3 細胞實驗藥品 15 2-4 實驗儀器 15 2-4-1 材料鑑定相關儀器 15 2-4-2 細胞實驗相關儀器 16 2-5 實驗方法與步驟 17 2-5-1 釔 / 鈰前驅物的製備 17 2-5-2 LiYF4:Ce3+奈米粒子的製備 17 2-5-3 去除奈米粒子表面官能基 18 2-5-4 以3-氨基丙基三甲氧基甲矽烷官能基化LiYF4:Ce3+奈米粒子 18 2-5-5 LiYF4:Ce3+奈米粒子的表面修飾 19 2-5-6 一氧化碳釋放之偵測 21 2-5-7 細胞存活率測試(MTT assay) 22 第三章 結果與討論 23 3-1 LiYF4:Ce3+閃爍體奈米粒子之性質與鑑定 23 3-2 去除表面官能基ScNPs奈米粒子的修飾與鑑定 26 3-3 以APTES官能基化之ScNPs奈米粒子的修飾與鑑定 32 第四章 結論 36 參考文獻 37

    1.Stewart, B. W.; Kleihues, P., World cancer report. 2003.
    2.Hashizume, H.; Baluk, P.; Morikawa, S.; McLean, J. W.; Thurston, G.; Roberge, S.; Jain, R. K.; McDonald, D. M., Openings between defective endothelial cells explain tumor vessel leakiness. The American Journal of Pathology 2000, 156 (4), 1363-1380.
    3.Greish, K., Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In Cancer Nanotechnology, Springer: 2010; pp 25-37.
    4.Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M., The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence‐based clinical guidelines. Cancer: Interdisciplinary International Journal of the American Cancer Society 2005, 104 (6), 1129-1137.
    5.Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K.-W., Cancer and radiation therapy: current advances and future directions. International Journal of Medical Sciences 2012, 9 (3), 193.
    6.Sivasubramanian, M.; Chuang, Y. C.; Lo, L.-W., Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deep-seated cancers. Molecules 2019, 24 (3), 520.
    7.Jackson, S. P.; Bartek, J., The DNA-damage response in human biology and disease. Nature 2009, 461 (7267), 1071-1078.
    8.Lauterbur, P. C., Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973, 242 (5394), 190-191.
    9.Yan, G.; Zhuo, R., Research progress of magnetic resonance imaging contrast agents. Chinese Science Bulletin 2001, 46 (15), 1233-1237.
    10.Lauffer, R. B., Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chemical Reviews 1987, 87 (5), 901-927.
    11.Yan, G.-P.; Robinson, L.; Hogg, P., Magnetic resonance imaging contrast agents: overview and perspectives. Radiography 2007, 13, e5-e19.
    12.Goldgefter, L.; Toder, V., Scintillator distribution in high-speed autoradiography. Science 1977, 195 (4274), 208-208.
    13.Derenzo, S.; Weber, M.; Bourret-Courchesne, E.; Klintenberg, M., The quest for the ideal inorganic scintillator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2003, 505 (1-2), 111-117.
    14.Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X.; Han, S.; Liang, L.; Yi, Z., All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561 (7721), 88-93.
    15.Moretti, F.; Patton, G.; Belsky, A.; Fasoli, M.; Vedda, A.; Trevisani, M.; Bettinelli, M.; Dujardin, C., Radioluminescence sensitization in scintillators and phosphors: trap engineering and modeling. The Journal of Physical Chemistry C 2014, 118 (18), 9670-9676.
    16.Takagi, K.; Fukazawa, T., Cerium‐activated Gd2SiO5 single crystal scintillator. Applied Physics Letters 1983, 42 (1), 43-45.
    17.Chen, Y.; Liu, B.; Shi, C.; Ren, G.; Zimmerer, G., The temperature effect of Lu2SiO5:Ce3+ luminescence. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2005, 537 (1-2), 31-35.
    18.Blasse, G.; Bril, A., A new phosphor for flying‐spot cathode‐ray tubes for color television: yellow‐emitting Y3Al5O12–Ce3+. Applied Physics Letters 1967, 11 (2), 53-55.
    19.Yaffe, M.; Rowlands, J., X-ray detectors for digital radiography. Physics in Medicine & Biology 1997, 42 (1), 1.
    20.Kamkaew, A.; Chen, F.; Zhan, Y.; Majewski, R. L.; Cai, W., Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano 2016, 10 (4), 3918-3935.
    21.Szabo, C., Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nature Reviews Drug Discovery 2016, 15 (3), 185.
    22.Rose, J. J.; Wang, L.; Xu, Q.; McTiernan, C. F.; Shiva, S.; Tejero, J.; Gladwin, M. T., Carbon monoxide poisoning: pathogenesis, management, and future directions of therapy. American Journal of Respiratory and Critical Care Medicine 2017, 195 (5), 596-606.
    23.Otterbein, L. E.; Foresti, R.; Motterlini, R., Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circulation Research 2016, 118 (12), 1940-1959.
    24.Ji, X.; Damera, K.; Zheng, Y.; Yu, B.; Otterbein, L. E.; Wang, B., Toward carbon monoxide–based therapeutics: critical drug delivery and developability issues. Journal of Pharmaceutical Sciences 2016, 105 (2), 406-416.
    25.Mann, B. E., CO-releasing molecules: a personal view. Organometallics 2012, 31 (16), 5728-5735.
    26.Crook, S. H.; Mann, B. E.; Meijer, A. J.; Adams, H.; Sawle, P.; Scapens, D.; Motterlini, R., [Mn(CO)4{S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule. Dalton Transactions 2011, 40 (16), 4230-4235.
    27.Yokota, Y.; Yanagida, T.; Abe, N.; Kawaguchi, N.; Fukuda, K.; Nikl, M.; Yoshikawa, A., Ce Concentration Dependence of Optical and Scintillation Properties for Ce Doped of LiYF4 Single Crystals. IEEE Transactions on Nuclear Science 2010, 57 (3), 1241-1244.

    下載圖示 校內:2025-07-30公開
    校外:2025-07-30公開
    QR CODE