簡易檢索 / 詳目顯示

研究生: 陳謫凡
Chen, Che-Fan
論文名稱: 台灣原生種白花蝴蝶蘭細胞分裂素氧化酶基因之研究
Study the cytokinin oxidase genes of Phalaenopsis aphrodite subsp. formosana
指導教授: 張清俊
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 95
中文關鍵詞: 白花蝴蝶蘭細胞分裂素氧化酶CRISPR / Cas9
外文關鍵詞: Phalaenopsis aphrodite, cytokinin oxidases, CRISPR/Cas9 system
相關次數: 點閱:117下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣原生種白花蝴蝶蘭 (Phalaenopsis aphrodite subsp. formosana),是屬於高經濟價值的花卉作物,且在蝴蝶蘭的商業化雜交育種中常使用作為親本。細胞分裂素 (CK) 為重要的植物賀爾蒙參與調控植物生長和發育,而細胞分裂素氧化酶 (CKX) 可調節細胞分裂素的濃度。所以利用阿拉伯芥 CKX 基因比對中研院蝴蝶蘭基因資料庫(Orchidstra),鑑定出白花蝴蝶蘭至少有三個 CKX 基因,而且在不同組織有特異性的表現。在親緣關係演化分析可將植物 CKX 基因分成3大群。利用基因剔除系統 (CRISPR / Cas9),嘗試剔除蝴蝶蘭中的單個或多個 CKX 基因,因此建構4個不同的 Cas9 / gRNA 細胞核表現載體。利用農桿菌轉殖花粉再行授粉的方式,將外源基因導入蝴蝶蘭。經 MSO (L-methionine sulfoximine) 篩選,分別自 pCas9-CKX1、pCas9-CKX2 和 pCas9-CKX3 轉殖品系得到18,15和3個具 MSO 抗性的幼苗。抽樣選取各品系的2株植株進行 PCR 分析確認含有外源基因之存在。但是定序分析 Cas9作用位點,則未發現有序列變異情形,雖然在其他位置有發現轉殖植物與對照組之序列有差異。

    P. aphrodite subsp. formosana is an endemic moth orchid in Taiwan, and is one of the most commonly used parental strains in breeding programs. Cytokinins (CKs) play a role in plant development and growth. The cytokinin oxidases (CKXs) are important regulators of active cytokinin levels. In moth orchid, three CKXs genes were identified by blast the corresponding genes of Arabidopsis against Orchidstra database. The CRISPR / Cas9 editing system was applied to knock out single or multiple CKX function in moth orchid. Four Cas9/gRNA nuclear expression vectors carrying bar gene as selection marker were constructed. Transgenes were introduced into moth orchid by pollination through Agrobacteria-mediated transformation of pollinia. Subsequently, the seeds were germinated and then selected with L-methionine sulfoximine (MSO). In total, 18, 15 and 3 MSO-resistant seedlings were obtained for pCas9-CKX1, pCas9-CKX2 and pCas9-CKX3 transgenic lines, respectively. At lease two seedlings from each transgenic line were conformed with integration of transgene into nuclear genome by PCR. Sequencing analysis to detect the mutational status in CKX genes, no difference was observed in target sites among wild type and transgenic plants, although some sequence mutation was observed in other part of CKX genes.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 XI 圖目錄 XII 縮寫表 XIII 一、研究背景 1 1-1台灣白花蝴蝶蘭 (Phalaenopsis aphrodite) 1 1-2細胞分裂素 (Cytokinin) 的形式和結構形式 1 1-3細胞分裂素合成相關路徑 2 1-4其他形式的細胞分裂素的活化 4 1-5植物細胞分裂素合成的組織 4 1-6調控細胞分裂素的合成機制 5 1-7細胞分裂素的降解和細胞分裂素氧化酶 (CKX) 的關係 5 1-8細胞分裂素的訊息傳遞路徑 7 1-9細胞分裂素調控植物的相關生理功能 8 1-10細胞分裂素影響蘭花的生長發育 9 1-11 CRISPR / Cas9 基因編輯工具及應用於植物的例子 10 1-12蘭花基因轉殖相關研究 11 1-13研究目的 11 二、材料與方法 13 2-1使用之白花蝴蝶蘭植株 13 2-2分析白花蝴蝶蘭細胞分裂素氧化酶的基因 13 2-3親緣演化分析 14 2-4生物資訊分析蝴蝶蘭 CKX 的位置 14 2-5設計蝴蝶蘭 CKX 基因之 Cas9 作用位點 14 2-6構築 Cas9 / gRNA 轉殖載體 15 2-7將表現載體送入農桿菌 22 2-8農桿菌花粉塊轉殖白花蝴蝶蘭 24 2-9蘭花植物組織 DNA 之萃取 25 2-10篩選建立 CKX 白花蝴蝶蘭轉殖株 26 2-11蘭花葉片組織暫時性表現外源基因及 HRM 檢測 26 2-12 PCR 偵測外源基因存在於蝴蝶蘭基因組中 28 2-13定序分析蝴蝶蘭 CKX 基因 28 三、結果 30 3-1蝴蝶蘭細胞分裂素氧化酶基因的分析 30 3-2生物資訊分析蝴蝶蘭 CKX 基因的表現情形 31 3-3生物資訊分析蝴蝶蘭 CKX 在細胞內的表現位置 31 3-4構築 Cas9 / gRNA 表現載體 32 3-5蝴蝶蘭轉殖與篩選 33 3-6分析 CKX 基因在白花蝴蝶蘭的剔除情形 33 3-7總結 34 四、討論 36 4-1生物資訊分析蝴蝶蘭的 CKX 基因 36 4-2白花蝴蝶蘭的轉殖與篩選 38 4-3蝴蝶蘭轉殖株 CKX 基因的分析 39 參考文獻 41 圖表 51 附錄 93 附錄圖 一、阿拉伯芥與蝴蝶蘭的 CK 生合成代謝路徑示意圖 93 附錄圖 二、阿拉伯芥 AtCKXs 基因特異性表現的情形 95

    陳文輝,蝴蝶蘭的品種改良,科學發展 351,31-39,2002。

    陳怡寬,利用細胞穿透胜肽運送 DNA 進入葉綠體,國立成功大學生物科技研究所碩士論文,2014。

    黃品升,利用植物熱休克蛋白 HSP 101 來提升外原蛋白質轉譯能力之研究,國立成功大學生物科技所碩士論文,2007。

    楊玉婷,國內蘭花產業市場趨勢簡析,台灣經濟研究院生物科技產業研究中心,2013。

    楊漢欽,臺灣之寶- Phalaenopsis formosana,中華蘭藝 10,33-39,1987。

    蘇源霖,轉殖似轉錄激活因子蛋白核酸酶(TALEN)來改變菸草葉綠體 DNA 序列之研究,國立成功大學生物科技研究所碩士論文,2016。

    Argyros, R. D., Mathews, D. E., Chiang, Y. H., Palmer, C. M., Thibault, D. M., Etheridge, N., Argyros, D. A., Mason, M. G., Kieber, J. J., and Schaller, G. E. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20, 2102-2116, 2008.

    Ashikari, M., Sakakibara, H., Lin, S. Y., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E. R., Qian, Q., Kitano, H., and Matsuoka, M. Cytokinin oxidase regulates rice grain production. Science 309, 741-745, 2005.

    Bartrina, I., Otto, E., Strnad, M., Werner, T., and Schmulling, T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23, 69-80, 2011.

    Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., and Nekrasov, V. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology 32, 76-84, 2014.

    Bilyeu, K. D., Cole, J. L., Laskey, J. G., Riekhof, W. R., Esparza, T. J., Kramer, M. D., and Morris, R. O. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiology 125, 378-386, 2001.

    Cao, H. X., Wang, W., Le, H. T., and Vu, G. T. The power of CRISPR-Cas9-induced genome editing to speed up plant breeding. International Journal Genomics 201, 507-516, 2016.

    Chen, C. M., Ertl, J. R., Leisner, S. M., and Chang, C. C. Localization of cytokinin biosynthetic sites in pea plants and carrot roots. Plant Physiology 78, 510-513, 1985.

    Chen, Y., and Piluek, C. Effects of Thidiazuron and N6-benzylaminopurine on Shoot Regeneration of Phalaenopsis. Plant Growth Regulation 16, 99-101, 1995.
    Choua, C. C., Chena, W. S., Huangb, K. L., Yuc, H. C., and Liaod, L. J. Changes in cytokinin levels of Phalaenopsis leaves at high temperature. Plant Physiology and Biochemistry 38, 309-314, 2000.

    Chung, C. T., Niemela, S. L., and Miller, R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proceedings of the National Academy of Sciences of the United States of America 86, 2172-2177, 1989.

    Danilova, M. N., Kudryakova, N. V., Voronin, P. Y., Oelmuller, R., Kusnetsov, V. V., and Kulaeva, O. N. Membrane receptors of cytokinin and their regulatory role in Arabidopsis thaliana plant response to photooxidative stress under conditions of water deficit. Russian Journal of Plant Physiology 61, 434-442, 2014.

    Duan, J. X., Chen, H., and Yazawa, S. In vitro propagation of Phalaenopsis via culture of cytokinin-induced nodes. Journal of Plant Growth Regulation 15, 133-137, 1996.

    Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., Cao, F., Zhu, S.,
    Zhang, F., Mao, Y., and Zhu, J. K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research 23, 1229-1232, 2013.

    Frebort, I., Kowalska, M., Hluska, T., Frebortova, J., and Galuszka, P. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany 62, 2431-2452, 2011.

    Gow, W. P., Chen, J. T., and Chang, W. C. Influence of growth regulators on direct embryo formation from leaf explants of Phalaenopsis orchids. Acta Physiologiae Plantarum 30, 507-512, 2008.

    Guo, Y. F., and Gan, S. S. AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiology 156, 1612-1619, 2011.

    Haberer, G., and Kieber, J. J. Cytokinins. New insights into a classic phytohormone. Plant Physiology 128, 354-362, 2002.

    Hill, K., Mathews, D. E., Kim, H. J., Street, I. H., Wildes, S. L., Chiang, Y. H. , Mason, M. G., Alonso, J. M., Ecker, J. R., Kieber, J. J., and Schaller, G. E. Functional characterization of type-B response regulators in the Arabidopsis cytokinin response. Plant Physiology 162, 212-224, 2013.

    Hirose, N., Takei, K., Kuroha, T., Kamada-Nobusada, T., Hayashi, H., and Sakakibara, H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany 59, 75-83, 2008.

    Hwang, I., and Sheen, J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383-389, 2001.

    Jiang, W., Zhou, H., Bi, H., Fromm, M., and Yang, B. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, Sorghum and rice. Nucleic Acids Research 41, 20-32, 2013.

    Kakimoto, T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant and Cell Physiology 42, 677-685, 2001.

    Kim, H. J., Ryu, H., Hong, S. H., Woo, H. R., Lim, P. O., Lee, I. C., Sheen, J., Nam, H. G., and Hwang, I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 814-819, 2006.

    Kuderova, A., Urbankova, I., Valkova, M., Malbeck, J., Brzobohaty, B., Nemethova, D., and Hejatko, J. Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant and Cell Physiology 49, 570-582, 2008.

    Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H., and Kyozuka, J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652-655, 2007.

    Kurepa, J., Li, Y., and Smalle, J. A. Cytokinin signaling stabilizes the response activator ARR1. Plant Journal 78, 157-168, 2014.

    Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S., Fukuda, H., Sugimoto, K., and Sakakibara, H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21, 3152-3169, 2009.

    Laplaze, L., Benkova, E., Casimiro, I., Maes, L., Vanneste, S., Swarup, R., Weijers, D., Calvo, V., Parizot, B., Herrera-Rodriguez, M. B., Offringa, R., Graham, N., Doumas, P., Friml, J., Bogusz, D., Beeckman, T., and Bennett, M. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19, 3889-3900, 2007.

    Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., and Sheen, J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31, 688-691, 2013.

    Lin, B. Y., Chang, C. D., Huang, L. H., Liu, Y. C., Su, Y. Y., Chen, T. C., Lee, R. H., Huang, J. H., Wu, W. L., and Chang, C. C. The mitochondrial DNA markers for distinguishing Phalaenopsis species and revealing maternal phylogeny. Biologia Plantarum 60, 68-78, 2016.

    Ma, S., Chang, J., Wang, X., Liu, Y., Zhang, J., Lu, W., Gao, J., Shi, R., Zhao, P., and Xia, Q. CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Scientific Reports 4, 4489-4495, 2014.

    Massonneau, A., Houba-Herin, N., Pethe, C., Madzak, C., Falque, M., Mercy, M., Kopecny, D., Majira, A., Rogowsky, P., and Laloue, M. Maize cytokinin oxidase genes: differential expression and cloning of two new cDNAs. Journal of Experimental Botany 55, 2549-2557, 2004.

    Mishiba, K., Chin, D. P., and Mii, M. Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Reports 24, 297-303, 2005.

    Miyawaki, K., Matsumoto-Kitano, M., and Kakimoto, T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant Journal 37, 128-138, 2004.

    Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G., and Kakimoto, T. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 103, 16598-16603, 2006.

    Mok, D. W., and Mok, M. C. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology 52, 89-118, 2001.

    Morris, R. O., Bilyeu, K. D., Laskey, J. G., and Cheikh, N. N. Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochemical and Biophysical Research Communications 255, 328-333, 1999.

    Mrizova, K., Jiskrova, E., Vyroubalova, S., Novak, O., Ohnoutkova, L.,
    Pospisilova, H., Frebort, I., Harwood, W. A., and Galuszka, P. Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. Plos One 8, 1371-1381, 2013.

    Murray, N., Bruce, S., and Murray, K. Molecular Cloning of DNA Ligase Gene from Bacteriophage T4. II. Amplification and Preparation of the Gene Product. Journal of Molecular Biology 132, 493-505, 1979.

    Pan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., Chen, L., and Lu, G. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports 6, 24765-24773, 2016.

    Ren, C., Han, C., Peng, W., Huang, Y., Peng, Z., Xiong, X., Zhu, Q., Gao, B., and Xie, D. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiology 151, 1412-1420, 2009.

    Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., and Liang, Z. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis
    vinifera L.). Scientific Reports 6, 32289-32295, 2016.

    Sakakibara, H. Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology 57, 431-449, 2006.

    Sakamoto, T., Sakakibara, H., Kojima, M., Yamamoto, Y., Nagasaki, H., Inukai, Y., Sato, Y., and Matsuoka, M. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiology 142, 54-62, 2006.

    Schafer, M., Brutting, C., Meza-Canales, I. D., Grosskinsky, D. K., Vankova, R., Baldwin, I. T., and Meldau, S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. Journal of Experimental Botany 66, 4873-4884, 2015.

    Schmulling, T., Werner, T., Riefler, M., Krupkova, E., and Manns, I. Y.
    Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. Journal of Plant Research 116, 241-252, 2003.

    Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J.,
    Xi, J. J., Qiu, J. L., and Gao, C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31, 686-688, 2013.

    Smart, C. M., Scofield, S. R., Bevan, M. W., and Dyer, T. A. Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in agrobacterium. Plant Cell 3, 647-656, 1991.

    Smehilova, M., Dobruskova, J., Novak, O., Takac, T., and Galuszka, P. Cytokinin-specific glycosyltransferases possess different roles in cytokinin
    homeostasis maintenance. Frontiers in Plant Science 7, 2016.

    Sun, J., Niu, Q. W., Tarkowski, P., Zheng, B., Tarkowska, D., Sandberg, G., Chua, N. H., and Zuo, J. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiology 131, 167-176, 2003.

    Takei, K., Sakakibara, H., Taniguchi, M., and Sugiyama, T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant and Cell Physiology 42, 85-93, 2001.

    Takei, K., Takahashi, T., Sugiyama, T., Yamaya, T., and Sakakibara, H. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. Journal of Experimental Botany 53, 971-977, 2002.

    Takei, K., Ueda, N., Aoki, K., Kuromori, T., Hirayama, T., Shinozaki, K., Yamaya, T., and Sakakibara, H. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant and Cell Physiology 45, 1053-1062, 2004.

    Takei, K., Yamaya, T., and Sakakibara, H. Arabidopsis CYP735A1 and
    CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. The Journal of Biological Chemistry 279, 41866-41872, 2004.

    Taya, Y., Tanaka, Y., and Nishimura, S. 5'-AMP is a direct precursor of cytokinin in Dictyostelium discoideum. Nature 271, 545-547, 1978.

    Tsay, H. S., Ho, H. M., Gupta, S. K., Wang, C. S., and Chen, P. T. Development of pollen mediated activation tagging system for Phalaenopsis and Doritaenopsis. Electronic Journal of Biotechnology 15,105-113, 2012.

    Veach, Y. K., Martin, R. C., Mok, D. W., Malbeck, J., Vankova, R., and Mok, M. C. O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiology 131, 1374-1380, 2003.

    Veerabagu, M., Elgass, K., Kirchler, T., Huppenberger, P., Harter, K., Chaban, C., and Mira-Rodado, V. The Arabidopsis B-type response regulator 18 homomerizes and positively regulates cytokinin responses. Plant Journal 72, 721-731, 2012.

    Vendrame, W. A., and Khoddamzadeh, A. A. Orchid biotechnology. Horticultural Reviews 44, 2014-2019, 2016.

    Von Schwartzenberg, K., Nunez, M. F., Blaschke, H., Dobrev, P. I., Novak, O., Motyka, V., and Strnad, M. Cytokinins in the bryophyte physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiology 145, 786-800, 2007.

    Wang, J., Ma, X. M., Kojima, M., Sakakibara, H., and Hou, B. K. Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thaliana. Plant Physiology and Biochemistry 65, 9-16, 2013.

    Wang, Y., Liu, X., Ren, C., Zhong, G. Y., Yang, L., Li, S., and Liang, Z. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. Biomed Central Plant Biology 16, 96, 2016.
    Wang, Y. P., Li, L., Ye, T. T., Zhao, S. J., Liu, Z., Feng, Y. Q., and Wu, Y. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant Journal 68, 249-261, 2011.

    Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., and
    Schmulling, T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15, 2532-2550, 2003.

    White, T. J., Arnheim, N., and Erlich, H. A. The polymerase chain reaction. Trends in Genetics 5, 185-189, 1989.

    Wu, P. H., and Chang, C. N. The use of N-6-benzyladenine to regulate flowering of Phalaenopsis orchids. HortTechnology 19, 200-204, 2009.

    Wu, P. H., and Chang, C. N. Cytokinin treatment and flower quality in Phalaenopsis orchids: comparing N-6-benzyladenine, kinetin and 2-isopentenyl adenine. African Journal of Biotechnology 11, 1592-1596, 2012.

    Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A., and Ori, N. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology 15, 1566-1571, 2005.

    Yang, S. H., Yu, H., and Goh, C. J. Functional characterisation of a cytokininoxidase gene DSCKX1 in Dendrobium orchid. Plant Molecular
    Biology 51, 237-248, 2003.

    Yanisch-Perron, C., Vieira, J., and Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33, 103-119, 1985.

    Yu, Z., Chen, M., Nie, L., Lu, H., Ming, X., Zheng, H., Qu, Li. Jia., and Chen, Z. Recovery of transgenic orchid plants with hygromycin selection by particle bombardment to protocorms. Plant Cell Tissue and Organ Culture 58, 87-92, 1999.
    Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S., and Yang, S. H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy Nucleic Acids 4, e264, 2015.

    Zubko, E., Adams, C. J., Machaekova, I., Malbeck, J., Scollan, C., and Meyer, P. Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant Journal 29, 797-808, 2002.

    下載圖示 校內:2022-01-20公開
    校外:2022-01-20公開
    QR CODE