| 研究生: |
鄭伯信 Cheng, Po-Hsin |
|---|---|
| 論文名稱: |
卡爾曼濾波器之正則化綜述 A Survey on the Regularisation of the Kalman Filtering |
| 指導教授: |
王辰樹
Wang, Chern-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 卡爾曼濾波 、病態系統 、正則化 、姿態和航向參考系統 |
| 外文關鍵詞: | Kalman filter, Ill-condition, Regularisation, Attitude and heading reference system |
| 相關次數: | 點閱:120 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
卡爾曼濾波因其為線性隨機動態系統進行最小方差估計而廣為人知,也因此被視為隨機訊號處理最重要的基礎工具之一,並在諸多實際應用上都有卓著的貢獻。然而在遭遇病態系統的過濾時,濾波估計值的發散與低度準確性常令人困擾不已。在本篇論文當中,我們研究了有關卡氏濾波的若干正則化方法,其中包含了吉洪諾夫正則化卡氏濾波以及脊型卡氏濾波。另外,受限於系統本身的低度觀測性而導致估計的窒礙難行,我們關注了以驅動響應同步化實現系統可觀測性的構想。這是一篇貫穿了卡爾曼濾波的理論到相關應用的獨立文章,在後半段中更為航空器的姿態和航向參考系統提供了初步的介紹,並展現了卡爾曼濾波在該系統上扮演的重要角色。期盼此篇論文能夠為有興趣的讀者帶來一些幫助與啟發。
As known as an optimal linear minimum mean-squared error estimator, Kalman filter is one of the most significant and fundamental approaches to incorporate stochastic state tracking for many practical applications. Ill-condition, nevertheless, in the filtering process challenges the convergence and accuracy of the estimate from the correct state. In this dissertation, we study several regularisation methods of the Kalman filter, including the ridge-type Kalman filter and the Tikhonov regularised Kalman filter, followed by the idea of drive-response synchronisation. This is a self-contained paper in which we go through the Kalman estimation theory and its related application, the attitude and heading reference system (AHRS). Hopefully it is beneficial to interested readers.
[1] M. S. Amin et al., “A novel vehicle stationary detection utilizing map matching and IMU sensors,” The Scientific World Journal, vol. 2014 (1), pp. 1-13, 2014.
[2] N. Assimakis, E. Psarakis and D. Lainiotis, “Steady-state Kalman filter: a new approach,” Neural, Parallel and Scientific Computations, vol. 11 (4), pp. 485-490, 2003.
[3] N. Assimakis and M. Adam, “Kalman filter Riccati equation for the prediction, estimation, and smoothing error covariance matrices,” ISRN Computational Mathematics, vol. 2013, 2013.
[4] J. Bellon, “Riccati equations in optimal control theory,” Thesis, Georgia State University, 2008.
[5] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th ed. John Wiley & Sons, Inc., 2012.
[6] F. Brauer and J. A. Nohel, The qualitative theory of ordinary differential equations: an introduction, Dover Publications, Inc., New York, 1989.
[7] D. E. Catlin, Estimation, Control, and the Discrete Kalman Filter, Springer-Verlag, New York, 1989.
[8] Z. Chen, “Bayesian filtering: from Kalman filters to particle filters, and beyond,” Statistics: A Journal of Theoretical and Applied Statistics, vol. 182(1), 2003.
[9] M. J. Corless and A. E. Frazho, Linear Systems and Control: An Operator Perspective, Taylor and Francis, 2003.
[10] H. G. de Marina et al., “UAV attitude estimation using unscented Kalman filter and TRIAD,” IEEE Transactions on Industrial Electronics, vol. 59 (11), pp. 4465-4474, 2012.
[11] B. Douglas, “Understanding sensor fusion and tracking- series of tutorial videos,” MathWorks, https:// www.mathworks.com/ videos/ series/ understanding-sensor-fusionand-tracking.html.
[12] R. Durrett, Essentials of Stochastic Processes, Springer-Verlag, New York, 2012.
[13] K. Feng et al., “A new quaternion-based Kalman filter for real-time attitude estimation using the two-step geometrically-intuitive correction algorithm,” Sensors, vol. 17 (9), p. 2146, Sep. 2017.
[14] R. Fletcher, “The sequential quadratic programming method,” In: Di Pillo G., Schoen F. (eds) Nonlinear Optimization. Lecture Notes in Mathematics, vol. 1989, Springer, Berlin, Heidelberg.
[15] G. Garcia, P. L. D. Peres and S. Tarbouriech, “Necessary and sufficient numerical conditions for asymptotic stability of linear time-varying systems,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008.
[16] N. A. Gershenfeld, The Nature of Mathematical Modeling, Cambridge University Press, 1999.
[17] M. S. Grewal and A. P. Andrews, “Applications of Kalman filtering in aerospace 1960 to the present,” IEEE Control Systems, vol. 30 (3), pp. 69-78, 2010.
[18] M. H. J. Gruber, Improving Efficiency by Shrinkage- The James-Stein and Ridge Regression Estimators, Statistics: A Series of Textbooks and Monographs, vol. 156, 1998.
[19] R. F. Gunst and R. L. Mason, Regression Analysis and its Application- A Data-Oriented
Approach, Statistics: A Series of Textbooks and Monographs, vol. 34, 1980.
[20] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to nonlinear systems,” Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition
VI, vol. 182, 1997.
[21] J. Kaipio and E. Somersalo, “Nonstationary inverse problems and state estimation,” Journal of Inverse and Ill-posed Problems, vol. 7 (3), pp. 273-282, 1999.
[22] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transaction of the ASME—Journal of Basic Engineering, 82 (Series D), pp. 35-45, 1960.
[23] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” Journal of Basic Engineering, Journal of Basic Engineering, vol. 83 (1), pp. 95-108, 1961.
[24] P. Kim and L. Huh, Kalman Filters for Beginners: with MATLAB Examples, CreateSpace Independent Publishing Platform, 2011.
[25] S. Konatowski, P. Kaniewski and J. Matuszewski. “Comparison of estimation accuracy of EKF, UKF and PF filters.” Annual of Navigation, Warsaw, Poland, vol. 23, issue 1, pp. 69-87, 2017.
[26] B. Kung, “A report for numerical experiments of unscented Kalman filter,” National Cheng Kung University, Taiwan, 2016.
[27] F. L. Lewis, Optimal Estimation: With an Introduction to Stochastic Control Theory, John Wiley & Sons, Inc., New York, 1986.
[28] Y. Li et al., “Ridge-type Kalman filter and its algorithm,” WSEAS Transactions on Mathematics, vol. 13, pp. 852-862, 2014.
[29] Y. Li, Q. Gui, S. Han and Y. Gu, “Tikhonov regularized Kalman filter and its applications in autonomous orbit determination of BDS,” WSEAS Transactions on Mathematics, vol. 16, 2017.
[30] X. Luo and S. S.-T. Yau, “Complete real time solution of the general nonlinear filtering problem without memory,” IEEE Transactions on Automatic Control, vol. 58, issue 10, 2013.
[31] L. A. McGee and S. F. Schmidt, “The discovery of the Kalman filter as a practical tool for aerospace and industry,” Ames Research Center, The National Aeronautics and Space Administration (NASA), 1985.[32] H. G. Moura et al., “On a stochastic regularization technique for ill-conditioned linear systems,” Open Engineering, vol. 9, issue 1, 2019.
[33] R. Nikoukhah, Alan S. Willsky, and B. C. Levy, “Kalman filtering and Riccati equations for descriptor systems,” IEEE Transactions Automatic Control, vol. 37 (9), 1992.
[34] L. Perea, “Kalman filters divergence and proposed solutions,” Institut de Ciències de l’Espai (CSIC-IEEC), 2006.
[35] L. Perea et al., “Nonlinearity in sensor fusion: divergence issues in EKF, modified truncated
GSF, and UKF,” AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, 2007.
[36] M. B. Rhudyl, R. A. Salguero1 and K. Holappa, “A Kalman filtering tutorial for undergraduate students,” International Journal of Computer Science and Engineering Survey (IJCSES), vol. 8 (1), 2017.
[37] D. Rowell, “Analysis and design of feedback control systems: state-space representation of LTI systems,” MIT Lecture Note, 2002.
[38] S. Särkkä, Bayesian Filtering and Smoothing, Cambridge University Press, 2013.
[39] D. Sbarbaro, M. Vauhkonen and T. A. Johansen, “Linear inverse problems and state estimation: regularization, observability and convergence,” 15th IFAC Workshop on Control Applications of Optimization, the International Federation of Automatic Control, Italy, 2012.
[40] P. R. Sharma et al., “Controlling dynamical behavior of drive-response system through linear augmentation,” The European Physical Journal Special Topics, vol. 223(8), pp.
1531-1539, 2014.
[41] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons Inc., 2006.
[42] J.A.K. Suykens, P.F. Curran and L.O. Chua, “Master-slave synchronization using dynamic output feedback,” International Journal of Bifurcation and Chaos, vol. 7 (3), 1997.
[43] A. Szyda. “Stability of Ttime-varying Linear System.,’ Pomiary Automatyka Kontrola, vol. 56 (11), pp. 1364-1367, 2010.
[44] G. A. Terejanu, “Extended Kalman filter tutorial,” University at Buffalo, 2008.
[45] G. A. Terejanu, “Unscented Kalman filter tutorial,’ University at Buffalo, 2011.
[46] A. Tewari, Modern control design with MATLAB and SIMULINK, John Wiley & Sons, LTD., 2002.
[47] N. A. Thacker and A.J.Lacey, “Tutorial: the likelihood interpretation of the Kalman filter,” Tina Memo, no. 1996-002, 2006.
[48] H. L. Trentelman, A. A. Stoorvogel and M. Hautus, “Control Theory for Linear Systems,” Springer, 2001.
[49] T. van den Boom, “Discrete-time systems analysis- additional lecture notes for the course SC4090,” Delft University of Technology, Delft, the Netherlands, 2006.
[50] P. van Dooren, “A generalized eigenvalue approach for solving Riccati equations,” SIAM Journal on Scientific and Statistical Computing, vol. 2, issue 2, pp. 121-135, 1981.
[51] M. Verhaegen and P. van Dooren, “Numerical aspects of different Kalman filter implementations,” IEEE Transactions on Automatic control, vol. AC-31 (10), 1986.
[52] T. C. G. Wagner, Analytical Transients, Wiley, 1959.
[53] E. A. Wan and R. van der Merwe, “The unscented Kalman filter for nonlinear estimation,” Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, 2000.
[54] E. A. Wan and R. van der Merwe, “The Unscented Kalman Filter,” in Filtering and
Neural Networks, S. Haykin, E. Wiley, ch.7, 2001.
[55] 容志輝, 基本線性系統理論, 全華科技圖書公司, 2003.
[56] “A Taiwanese satellite: Formosat-5 highlights space R&D capabilities,” Taiwan Panorama, https://nspp.mofa.gov.tw/nsppe/news.php?post=132300&unit=410