| 研究生: |
李紹平 Li, Shao-Ping |
|---|---|
| 論文名稱: |
利用PE-CVD以疊層(Layer-by-Layer)技術
在玻璃基板上成長奈米複晶矽鍺能障型光電晶體之研究 The Study of nc-SiGe Bulk Barrier Phototransistor Prepared by PECVD with Layer-by-Layer(LBL) Technology |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 奈米複晶矽鍺 、光電晶體 |
| 外文關鍵詞: | phototransistor, nc-SiGe |
| 相關次數: | 點閱:56 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用PECVD疊層技術,利用氫原子電漿處理技術打斷通入SiH4及GeH4的Si、Ge之鍵結,進而結合成奈米複晶矽鍺薄膜。並利用FESEM、AFM觀察薄膜的表面狀態,使用Raman spectra、FTIR等儀器分析薄膜的結晶品質,以及使用PL來量測其吸收光譜。
本文主要的內容在研製在玻璃基板上以nc-SiGe為材料所成長的能障型光電晶體,並探討其照光及不照光之電性。此元件因基極層的P型薄膜非常薄,在不照光時,任何偏壓下P層內都無自由載子。且電流能藉由外加偏壓改變的能障來控制,以加速元件的交換速率。又在照光下,因光激電洞在能障區堆積,使得能障高度下降,導致大量的電子由射極放射至集極,而產生大的光電流。
此外,我們討論了元件在未照光與照光下的I-V特性、光增益、光譜響應及響應速度等。在VCE等於5V時以波長700nm,5mW之雷射光照射下可得到的最大光增益為25;響應速度的上升時間可達10μs,下降時間則為10μs。這些結果比起非晶矽能障型光電晶體的光增益為3.2;響應速度的升降時間為30μs[27],本元件更適合作為高增益且高速的紅外線光感測器之用。
In this thesis, we used layer-by-layer method (LBL), to develop nc-SiGe phototransistor on glass substrate. The LBL method takes the advantage of hydrogen plasma annealing to break the bonds within Si and Ge compound, thus growing the nc-SiGe thin films effectively. Firstly, we investigated physical, optical and electrical characteristics of the films by FE-SEM, AFM, Raman spectrum, Photoluminescence, respectively to optimize the depositing parameters. Then the optimized parameters were employed to prepare nc-SiGe bulk barrier phototransistors on glass substrate.
The device has an ultra thin base layer, so that the current flow is controlled by the potential barrier of the device. Through an external voltage, one can control the barrier height to speed the operation of device. In addition, under illumination, the photo generated holes are accumulated in the potential valley (at the base region), thus lowering the barrier height, and resulting a lot of electrons inject from emitter to collector, and in turn a large photo current.
Furthermore, we investigated the I-V characteristics of the device with and without the illumination of an infrared light source. Optical gain, spectrum response, and response speed were be measured. At 5V VCE bias, and under 5mW at λ=700nm laser diode illuminated, the maximum optical gain is 25; the response speed for rise time is 10μs, and 10μs for fall time. These data are better than 3.2 for optical gain, and 30μs for response time of the amorphous Silicon bulk barrier phototransistors, thus the developed. Thus, the developed nc-SiGe bulk barrier phototransistors device is more suitable for high gain and high speed infrared photo detecting applications.
[1]C.Y. Chen, J.-J. Ho, Y.K. Fang and S.F. Chen, “Performance Analysis and Development of High-speed pin Infrared Sensors Prepared on Crystalline Silicon Substrates”, ICOSN 2001 (SPIE), pp305-310,June (2001).
[2]Jyh-Jier Ho, Y.K. Fang, K.H. Wu, and C.S. Tsai, “High-gain p-i-n infrared photosensors with Bragg reflectors on amorphous silicon alloy,” Appl. Phys. Lett.,.70 (7), pp.826-828, 17 Feb. (1997).
[3]Jyh-Jier Ho, Y.K. Fang, K.H. Wu and S.C. Huang, M.S. Ju and Jing-Jenn Lin, “High-speed Amorphous Silicon Germanium Infrared Sensors Prepared on Crystalline Silicon Substrates”, IEEE Trans. on Electron Devices, Vol.45, No.9, pp.2085-2088, Sept. (1998).
[4]Y. K. Fang, S. B. Hwang, K. H. Chen, C. R. Liu and L. C. Kuo, “A metal-amorphous silicon-germanium alloy schottky barrier for infrared optoelectronic IC on glass substrate application”, IEEE Trans on Electron Devices, Vol 39, No 6, pp.1350, (1992).
[5]T.Aoyama, G.Kawachi, N,Konishi, Y.Okajima and K.Miyata, “Crystallization of LPCVD Silicon Films by Low Temperature Annealing”, Journal of the Electrochemistry . Soc., vol136, no.4, pp.1169-1173, 1989.
[6]Seong-Min Choe, Jeong-Ah Ahn and Ohyum Kim, “Fabrication of Laser Annealed Poly-TFT by Foaming a SixGE1-x Thermal Barrier”, IEEE Electron Device Letters, Vol.22, No.3, March 2001.
[7]Seok-Woon Lee, Yoo-Chan Jeon and Seung-Ki Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett., 66(13), 27, pp1671-1673, March 1995.
[8]Jae Young, Ki Hyung Kim and Chae Ok Kim, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution”, Journal of Applied Physics, 82(11),pp.5865-5867, December 1997.
[9]Hiroshi Kanno, Isao Tsunoda, Atsushi Kenjo, Taizoh Sadoh, Shinya Tamaguchi, Masanobu Miyao, “Metal-induced solid-phase crystallization of amorphous SiGe film on insulator”, SSDM, 2002.
[10]P. Photopoulos, A.G. Nassiopoulou , D.N. Kouvatsos , A. Travlos,” Photo- and electroluminescence from nanocrystalline silicon single and multilayer structures”, Materials Science and Engineering B69–70 pp.345–349 (2000).
[11]T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura , S. Nitta, “Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids 266-269 pp.201-205 (2000).
[12]P. Roca i Cabarrocas, ”New approaches for the production of nano-, micro-,and polycrystalline silicon thin films”, phys. stat. sol. (c) 1, No. 5, 1115– 1130 (2004).
[13]Pere Roca i Cabarrocas, Anna Fontcuberta i Morral, Sarra Lebib,and Yves Poissant, “Plasma production of nanocrystalline siliconparticles and polymorphous silicon thin films for large-area electronic devices”, Pure Appl. Chem., Vol. 74, No. 3, pp. 359–367, (2002).
[14]P. J. Ventura, M. F Cerqueira, M. C. Carmo, J. A. Ferreira, “ Photoluminescence and structure properties from uc-Si:H and uc-Si:H-PS samples”, Thin Solid Films 296 pp.126–128 (1997).
[15]M. K. van Veen, C.H.M. van der Werf, J. K.Rath, R.E.I.Schropp, “Incoporation of amorphous and microystalline silicon in n-i-p solar cells”, Thin Solid Films 430 pp.216–219 (2003).
[16]Akihisa Matsuda, “Growth mechanism of microsytalline silicon obtained from reactive plasmas”, Thin Solid Films 337 pp.1–6 (1999).
[17]S. B. Hwang, Y. K. Fang, K. H. Chen, C. R. Liu, J. D. Hwang and M. H. Chou, “An a-Si:H/a-Si,Ge:H bulk barrier phototransistor with a-SiC:H barrier enhancement layer for high-gain IR optical detector”, IEEE Trans on Electron Devices, Vol 40, No 4, pp.721, (1993).
[18]T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, ”Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids 266-269 201-205. (2000).
[19]P. Roca i Cabarrocas, ”Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids 266-269 31-37 (2000).
[20]C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter 66 (23), 5 June (1995).
[21]Akihisa Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasma”. Thin Solid Films 337 1-6 (1999).
[22] O. Vetterl, P. Hapke, F. Finger, L. Houben, ”Growth of microcrystalline silicon using the layer-by-layer technique at various plasma excitation frequency”. Journal of Non-Crystalline Solids 227-230. 866-870 (1998).
[23]P. Roca i Cabarrocas, “Plasma enhanced chemical vapor deposition of silicon thin films for large area electronics”, Current Opinion in Solid State and Material Science 6 439-444 (2002).
[24]王文德,方炎坤, ”利用PECVD以改良式的複晶矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文,民國92年6月。
[25]M. Krause, H. Stiebig, R.Carius, U. Zastrow, H. Bay, H. Wagner, ”Structural and optoelectronic properties of microcrystalline silicon germanium”, Journal of Non-Crystalline Solids 299-302 (2002) 158-162.
[26]Xunming Deng, “High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells”, Annual Technical Progress Report (September 1, 2002 to August 31, 2003).
[27]C. Y. Chang, B. S. Wu, Y. K. Fang, and R. H. Lee, “Optical and electrical current gain in an amorphous silicon bulk barrier phototransistor”, IEEE Trans on Electron Devices, Vol. EDL-6, No 3, march pp.149 (1985).
[28]G. de. Cesare, G.. Masini, and F. Palma, Member, IEEE “Modeling and realization of a high-gain homojunction a-Si:H bulk barrier phototransistor”, IEEE Trans on Electron Devices, Vol 43, No 8, august pp.1077(1996).
[29]K. C. Chang, Chun-Yen Chang, Y. K. Fang, and S. C. Jwo, “The amorphous Si/SiC heterojunction color-sensitive phototransistor”, IEEE Trans on Electron Devices, Vol. EDL-8, NO 8, PP.64(1987).
[30]Zingway Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M.-J. Tsai, and C. W. Liu, Senior Member, IEEE, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor”, IEEE Trans on Electron Devices, Vol. 24, NO 10, PP.643(2003).