| 研究生: |
莊佳昇 Chuang, Chia-Sheng |
|---|---|
| 論文名稱: |
水電式液體震波管之研製 Development of an Electro-Hydraulic Liquid Shock Tube |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 液體震波管 、水電式震波產生器 、拋物面反射器 、水下震波 |
| 外文關鍵詞: | underwater shock wave, parabolic reflector, liquid shock tube, electro-hydraulic shock wave generator |
| 相關次數: | 點閱:167 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要的目的為製作一套高壓脈衝壓力之液體震波管。液體震波係利用水電式震波產生器在震波管的一端產生,再利用拋物面反射器將點波源方式所產生的球狀震波,匯集成沿軸向傳遞的平面震波,並利用兩個安裝在震波管管壁上的速度參考感測器量測震波的波速,以及震波管底部的壓力參考感測器量測震波壓力強度,最後和理論結果作比較。為了探討液體導電度對脈衝放電效率、震波強度及其重覆性之影響,本實驗測試了不同導電度的液體,實驗結果顯示,此設備可成功地產生強度100 MPa左右的水下震波。
This study aims at the development of a liquid shock tube for generating high pressure pulse. A spherical shock wave is created using a electro-hydraulic shock wave generator and then is focused to a planar shock using a parabolic reflector. The planar shock wave propagates along the shock tube. The speed of the shock is measured using two reference sensors mounted in a short distance along the tube and is used to calculate the theoretical shock strength. The shock strength is also measured directly by a pressure transducer mounted on the end plate of the tube and is compared with the theoretical results. We also explore the effect of electrical conductivity on the efficiency of electrical spark discharge which can influence the strength and the reproducibility of the shock. Experimental results show that the shock tube can successfully generate underwater shock wave of strength about 100 MPa.
Ahn, H., Tanaka, K., Tsuge, H., Terasaka, K., and Tsukada, K., “Centrifugal Gas-Liquid Separation under Low Gravity Conditions,” Separation and Purification Technology, vol. 19, no. 1-2, pp. 121-129 (2000).
Arndt, R. E. A., Paul, S., and Ellis, C. R., “Application of Piezoelectric Film in Cavitation Research,” Journal of Hydraulic Engineering, vol. 123, no. 6, pp. 539-548 (1997).
Brennen, C.E., Cavitation and Bubble Dynamics, Oxford University Press, New York, N.Y., (1995).
Broyer, P., Cathignol, D., Theillere, Y., and Mestas, J.L., “New Discharge Circuit Using High Voltage Transmission Line for Efficient Shock Wave Generation: Application to Lithotripsy,” Proceedings of the IEEE Ultrasonics Symposium, vol. 3, pp. 1883-1886 (1994).
Broyer, P., Cathignol, D., Theillere, Y., and Mestas, J. L.,“High-efficiency Shock-wave Generator for Extracorporeal Lithotripsy,” Medical & Biological Engineering & Computing, vol. 34, no. 5, pp. 321-328 (1996).
Casem, D.T., Fourney, W. L., and Madigosky, W., “Response of Materials to Underwater Shock: Testing in Water-Filled Shock Tubes,” ASME, Pressure Vessels and Piping Division (Publication) PVP, vol. 361, pp. 157-165 (1998).
Cathignol, D., Mestas, J. L., Dancer, P., Bourlion, M., Gomez, F., and Lenz, P., “Improvement of The Reproducibility in Electrohydraulic Generators by Using Conducting Liquid,” Ultrasonics Symposium Proceedings, vol. 3, pp. 641-1644 (1990).
Cathignol, D., Mestas, J. L., Gomez, F., and Lenz, P., “Influence of Water Conductivity on The Efficiency and The Reproductibility of Electrohydraulic Shock Wave Generation,” Ultrasound in Medicine and Biology, vol. 17, no. 8, pp. 819-828 (1991).
Clark, A., Dewhurst, R. J., Payne, P. A., and Ellwood, C., “Degassing a Liquid Stream Using an Ultrasonic Whistle,” Proceedings of the IEEE Ultrasonics Symposium, vol. 1, pp. 579-582 (2001).
Coleman, A. J., Choi, M. J., and Saunders, J. E., “Theoretical Predictions of The Acoustic Pressure Generated by a Shock Wave Lithotripter,” Ultrasound in Medicine and Biology, vol. 17, no. 3, pp. 245-255 (1991).
Fujikawa, S., and Akamatsu, T., “Experiment Investigation of Cavitation Bubble Collapse by a Water Shock Tube,” Bulletin of the JSME, vol. 21, no. 152, pp. 223-230 (1978).
Glass, I. I., and Heuckroth, L. E.,. Hydrodynamic shock tube. Physics of Fluids, vol. 6, no. 4, pp. 543-547 (1963).
Inose, N., and Ide, M., “Variation of Pressure Waveforms in Measurements of Extracorporeal Shock Wave Lithotripter,” Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, vol. 32, no. 5B, pp. 2487-2489 (1993)
Kameda, M., and Matsumoto, Y., “Shock Waves in a Liquid Containing Small Gas Bubbles,” Physics of Fluids, vol. 8, no. 2, pp. 322 (1996).
Kang, B. K., and Uhm, H. S., “Electrical Discharge Characteristics in Water and Shockwaves,” IEEE International Conference on Plasma Science, pp. P4I02 (2001).
Kosing, O. E., and Skews, B. W., “Investigation of High-Speed Forming of Circular Plates in a Liquid Shock Tube,” International Journal of Impact Engineering, vol. 21, no. 9, pp. 801-816 (1998).
Kirkwood, J.G., et al. The pressure wave produced by an underwater explosion. OSRD Reports I(No.558), II(No.676), III(No.813), (1942).
Liu, H. J., and An, Y., “Pressure Distribution Outside a Single Cavitation Bubble,” Wuli Xuebao/Acta Physica Sinica, vol. 53, no. 5, pp. 1406-1412 (2004).
Matula, T. J., Hilmo, P. R., Storey, B. D., and Szeri, A. J., “Radial Response of Individual Bubbles Subjected to Shock Wave Lithoripsy Pulses in Vitro,” Physics of Fluids, vol. 14, no. 3, pp. 913-921 (2002).
Majumdar, S., Guha, A. K., and Sirkar, K., “A New Liquid Membrane Technique for Gas Separation,” AIChE Journal, vol. 34, no. 7, pp. 1135-1145 (1988).
McGill, J. C., “Use Vacuum to Deaerate Injection Water,” Oil and Gas Journal, vol. 73, no. 16, pp. 69-71 (1975).
Ohl, C. D., “Cavitation Inception Following Shock Wave Passage,” Physics of Fluids, vol. 14, no. 10, pp. 3512-3521 (2002).
Sanchidrian, J. A., “Numerical Modeling Evaluation of Underwater Energies,” Propellants, Explosives, Pyrotechnics, vol. 23, no. 6, pp. 301-308 (1998).
Shima, A., Takayama, K., Tomita, Y., and Miura, N., “Experimental Study on Effects of a Solid Wall on the Motion of Bubbles and Shock Waves in Bubble Collapse,” Acustica, vol. 48, no. 5, pp. 293-301 (1981).
Shin, Y. S., “Ship Shock Modeling and Simulation for Far-Field Underwater Explosion,” Computers and Structures, vol. 82, no. 23-26, pp. 2211-2219 (2004).
Shy, S. S., “Analysis of Shock Waves in Liquids: A Study of Noninvasive Fracturing of Kidney Stones,” Journal of the Chinese Society of Mechanical Engineers, vol. 16, no. 6, pp. 621-628 (1995).
Sunka, P., Fuciman, M., Babicky, V., Clupek, M., Benes, J., Pouckova, P., and Soucek, J., “Generation of Focused Shock Waves by Multi-Channel Electrical Discharges in Water,” IEEE Conference Record of Power Modulator Symposium, pp. 174-177 (2002).
Thompson, P. A., Compressible-fluid dynamics, McGraw-Hill, New York, pp. 102 and pp. 644 (1971).
Wen, C. Y., and Lin, C. Y., “Liquid Shock Design and Testing at Da-Yeh University,” Accepted for presentation in 24th International Symposium on Shock Waves, July 20 - 25, Beijing, China. (2003).
Wu, Z. M., and Jian, W. X., “Water Shock Tube for High Pressure Dynamic Calibration,” Conference Record - IEEE Instrumentation and Measurement Technology Conference, vol. 2, pp. 468-470 (1994).
Zhang, C., Gao, J., Li, J., and Yang, J., “The Propulsion Effect of Plasma Explosion of Metal Wire in Water,” Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, vol. 2, pp. 599-602 (2003).
尹孝元, “水下爆炸氣泡之動力分析”, 國立成功大學水利及海洋工程研究所碩士論文, 1996.
郭志祥, “水電式氣泡產生器的特性研究”, 國立成功大學機械工程研究所碩士論文, 2003.