簡易檢索 / 詳目顯示

研究生: 劉剛瑋
Liu, Kang-Wei
論文名稱: 鎳基合金殼狀鑄件的熱矯直分析
Hot-straightening of Nickel-based and Shell-shaped castings
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 熱矯直鎳基超合金
外文關鍵詞: Hot-straightening, INCONEL738LC
相關次數: 點閱:146下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   精密鑄造脫蠟法自1940年代即被應用到工業界,目前主要應用於航空太空及一般機械產業,期間也經過多次的開發與改良,但鑄件冷卻後所產生的熱變形問題卻一直無法被完全改善。
      本文利用有限元素數值分析軟體ABAQUS,對航空引擎中一個鎳基INCONEL738LC軸對稱擴散器的熱變形鑄件,進行平面度與真圓度等問題的熱矯直改善研究,將鎳基材料假設成完全塑性和線性加工硬化兩種材料行為,作為此鑄件之材料參數依據,並以850℃作為熱矯直之溫度。
      在本文所設之位移拘束與兩種熱變形相互影響最小的條件下,此鑄件的平面度變形量3~9mm時,完全塑性材料行為所需的熱矯直力為15.1~19.4kN(矯直壓力3.5~4.5MPa);線性加工硬化材料行為所需的熱矯直力為23.7~36.7kN(矯直壓力5.5~8.5MPa)。鑄件真圓度直徑變形量 1~4mm時,線性加工硬化材料行為所需的熱矯直力為12.2~16.5kN(矯直壓力17~23MPa);線性加工硬化材料行為所需的熱矯直力為17.9~25.1kN(矯直壓力25~35MPa)。因受工件結構剛性差異的影響,在相同變形量條件下,真圓度變形所需之熱矯直力與平面度變形所需之熱矯直力會有所不同。

      The investment casting has been used in industry since 1940 year. The airspace industry is the main users of investment castings. It has been improved several times. However, problems of thermal deformation are still under investigation.
      The objective of this thesis is to study thermal deformation of the shell-like casting of engine parts with finite element method by ABAQUS. In the simulation of hot-strengthening, the material is assumed to be either perfectly plastic materials or linear working hardening materials.
      Under the specified constrained conditions, as the thermal deformation along axial direction is ranged 3~9mm, the hot-straightening force for perfectly plastic materials and linear working hardening materials are 15.1kN~19.4kN and 23.7~36.7kN, respectively. As the thermal deformation along radial direction is ranged 1~4mm, the hot-straightening force for perfectly plastic materials and linear working hardening materials are 12.2~16.5kN and 17.9~25.1kN, respectively. Under the condition of the same thermal deformation, the required hot-straightening force for flattening case and rounding case are quite different.

    摘要 ABSTRACT 誌謝 目錄 表目錄 圖目錄 符號說明 第1章 緒論1 1.1 前言1 1.2 文獻回顧2 1.3 研究動機4 1.4 本文架構5 第2章 精密鑄造與熱傳遞理論6 2.1 精密鑄造法6 2.1.1 脫蠟法6 2.1.2 陶瓷模法10 2.1.3 石膏模法11 2.2 鎳基超合金14 2.3 熱傳遞理論16 2.4 數值分析軟體ABAQUS簡介17 第3章 彈塑性材料理論21 3.1 降伏準則21 3.1.1 Tresca降伏準則21 3.1.2 von Mises降伏準則23 3.2 硬化法則24 3.2.1 等向型加工硬化25 3.2.2 運動型加工硬化26 3.2.3 混合型加工硬化28 3.3 完全塑性材料29 3.3.1 負載和卸載準則30 3.3.2 塑流法31 3.3.3 塑流法與von Mises降伏方程式關係32 3.3.4 塑流法與Tresca降伏方程式關係35 3.3.5 完全塑性材料應力應變增關係38 3.3.6 彈塑性材料基本性質40 3.4 線性加工硬化材料43 第4章 模擬分析結果與討論44 4.1 有限元素法44 4.2 模型參數與性質48 4.2.1 幾合模型48 4.2.2 材料性質49 4.2.3 工件回彈測試52 4.2.3.1 初始條件與邊界條件52 4.2.3.2 測試結果52 4.3 模擬分析流程53 4.4 初始條件與邊界條件55 4.4.1 初始條件55 4.4.2 力學邊界條件55 4.4.3 熱傳遞邊界條件56 4.5 模擬分析結果57 4.5.1 完全塑性材料57 4.5.1.1 熱傳遞結果57 4.5.1.2 力學結果59 4.5.2 線性加工硬化材料73 4.5.2.1 熱傳遞結果73 4.5.2.2 力學結果74 4.5.3 結果探討與比較85 第5章 結論與未來展望88 5.1 結論88 5.2 未來展望90 參考文獻91 自述95

    [1]陳武宏,“精密鑄造應用實務”,全華科技圖書股份有限公司,台北市,1989。
    [2]中國材料科學學會材料手冊編審委員會,“材料手冊-非鐵金屬材料”,中國材料科學學會,高雄市,1983。
    [3]Kubo M., Sugiyama N., Kitahori H., “Straightening Effects of Steel I-Beams Failed by Lateral Torsional Buckling”, NASA no. 19990025246. Reports of the Faculty of Science and Technology, Meijo University (ISSN 0386-4952), Volume 38 , pp. 87-95. 1998.
    [4]Sun J., Ke Y.L., “Research on key technologies for straightening pocketed aircraft frame parts”, Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science). Vol. 38, no. 3, pp. 351-356. Mar. 2004.
    [5]STEPANOV G.V., PERELMAN L.D., PODGASKII M.S., MAKSIHOV A. B., “Influence of temperature-deformation conditions on mechanical properties of rolled plate after straightening”, Stal, (USSR) , no. 5, pp. 56. 1982.
    [6]RAMMERSTORFER F.G., FISCHER D.F., “Nonlinear elastic-plastic stability and contact problems concerning the straightening of a wave-like deformed strip plate”, Numerical methods for non-linear problems; Proceedings of the International Conference, Swansea, Wales; 2-5 Sept. 1980. pp. 307-315. 1980.
    [7]SCHUMANN W.;WUETHRICH W., “Two problems of elastic straightening (Elastic straightening of slightly curved shell and significantly curved beam, considering prestressed structural stiffness)”, INGENIEUR-ARCHIV. Vol. 39, no. 6, pp. 383-389. 1970.
    [8]SKINNER R.D., “Stress-peen straightening of complex machined aircraft parts”, Formability topics Metallic materials; Proceedings of the Symposium, Toronto, Canada; 4 May 1977. pp. 100-121. 1978.
    [9] 賴耿陽,“精密鑄造技術-脫蠟、陶模、石膏模”,復漢出版社,台南市,1983。
    [10]林宗獻,“精密鑄造”,全華科技圖書股份有限公司,台北市,1993。
    [11]何堃森、劉先進,“航空用大型薄壁構造鑄件INCO718*真空精密鑄造及其相關性質研究”,鑄工季刊,第63期,pp.16~37。
    [12]Yungs A.C., “Heat Transfer A Practical Approach”, McGraw-Hill, New York, 1998.
    [13]愛發股份有限公司,“ABAQU實務入門引導”,全華科技圖書股份有限公司,台北市,2005。
    [14]ABAQUS Theory Manual, H.K.S. inc., Pawtuckkett, RI, 1998.
    [15]Chen W.F, Han D.J., “Plasticity for Structural Engineers”, Taipei, CAU LIH BOOK CO., 1995.
    [16]Alexander M., “Plasticity :theory and application”, Macmillan, New York,1968.
    [17]Balikci E., Mirshams R.A., Raman A., “Tensile Strengthening in Nickel-Base Superalloy In738LC”, Journal of Materials Engineering Performance, Vol.9(3), pp.324~329, 2000.
    [18]Masatsugu Y., Masato Y., Takashi Ogata, A viscoplastic constitutive model for nickel-base superalloy, part 1: kinematic hardening rule of anisotropic dynamic recovery, International Journal of Plasticity, Vol.18,pp.1083~1109, 2002.
    [19]Masatsugu Y., Masato Y., Takashi Ogata, A viscoplastic constitutive model for nickel-base superalloy, part 2:modeling under anisothermal conditions, International Journal of Plasticity, Vol.18,pp.1111~1131, 2002.

    [20]楊德輝,“最新鑽模夾具技術”,全華科技圖書股份有限公司,台北市,1986。
    [21]吳家駒,“合理化夾具設計”,徐氏基金會,台北縣,1992。
    [22]賀俊、楊永盛、劉清意,“基本工模與夾具製作”,徐氏基金會,台北縣,1979。
    [23]許文榕、藍天雄,“鑽模與夾具”,高立圖書有限公司,台北市,1998。
    [24]林逢春,“工模與夾具使用方法”,全華科技圖書股份有限公司,台北市,1991。

    下載圖示
    2005-07-21公開
    QR CODE