| 研究生: |
簡誌德 Jian, Jhih-De |
|---|---|
| 論文名稱: |
最小輸入能量法於半主動質量阻尼器系統之應用研究 Least Input Energy Method for Semi-Active Mass Damper Systems |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 調諧質量阻尼器 、混合型質量阻尼器 、半主動質量阻尼器 、槓桿式勁度可控質量阻尼器 、最小能量法主動控制律 |
| 外文關鍵詞: | Tuned Mass Damper, Hybrid Mass Damper, Semi-active Mass Damper, Leverage-Type Stiffness Controllable Mass Damper, Least Energy Method |
| 相關次數: | 點閱:161 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
被動調諧質量阻尼器(TMD)乃實務廣為應用之振動控制裝置,但TMD對於頻率之去調諧效應十分敏感,且往往有衝程過大之疑慮;為同時減低衝程的需求並維持等值之控制成效,可藉由主動控制理論施加額外之控制力於TMD而為混合型質量阻尼器,或經由適當之控制機制調整TMD之特性而成為半主動質量阻尼器。本文藉由討論結構振動反應與系統能量之關係,推導出最小能量法(Least Energy Method,簡稱LEM)主動控制律,藉由槓桿式勁度可控質量阻尼器(Leverage-type Stiffness Controllable Mass Damper,簡稱LSCMD),進行半主動質量阻尼器裝設於一般長週期結構及摩擦單擺隔震結構,於遠、近域地震作用下之振動控制成效研究,並與採用線性二次調節器(Linear Quadratic Regulator,簡稱LQR)控制律之LSCMD系統進行比較。經由數值模擬結果可知,一般長週期結構及摩擦單擺隔震結構,裝置LSCMD並採用LEM控制律皆有良好之控制成效,不但可改善採用LQR控制律時等值控制力易發散之缺陷,且LEM之控制成效更佳。
By observing the relationship between system energy and vibration responses subjected to earthquake loadings, the Least Energy Method (LEM) control algorithm is developed in this thesis. A novel Leverage-type Stiffness Controllable Mass Damper (LSCMD) adopted with the proposed LEM control law is equipped on a long-period regular building and an isolation building in this study to improve the performance of the conventional TMD by reducing its required stroke. By utilizing a simple leverage mechanism, the stiffness of the LSCMD can be easily controlled by adjusting the position of the pivot point on the leverage arm. In order to determine the on-line pivot position of the LSCMD, the proposed LEM is employed to adjust the pivot position instantaneously with seismic response to improve its control performance of passive mode. In order to demonstrate the control stability performance, it is also compared with the LSCMD controlled by traditional LQR control law. By investigating the response suppression performance of its passive counterpart and that controlled by LQR, the simulation results demonstrate that the LSCMD controlled by the proposed LEM control law can achieve better control performance and control stability with smaller stroke demand.
. Asami, T., Wakasono, T., Kameoka, K., Hasegawa, M., Sekiguchi, H., “Optimal Design of Dynamic Absorbers for A System Subjected to Random Excitation”, JSME International Joural, Vol. 34, No. 2, pp. 218-226, (1991).
2. Chey, M. H., Chase, J. G., “Semi-active tuned mass damper building systems: Design”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 2, pp. 119-139,(2010).
3. Chey, M. H., Chase, J. G., “Semi-active tuned mass damper building systems: Application”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 1, pp. 69-89,(2010).
4. Chu, S.Y., Lin, C.C., Chung, L.L., Chang, C.C., Lu, K.H., “Optimal Performance of Discrete-time Direct Output-feedback Structural Control with Delayed Control Forces”, Structrual Control and Health Monitoring, Vol. 15, No. 1, pp. 22-42, (2008).
5. Chu, S.Y., Soong, T.T., Reinhorn, A.M., “Active, Hybrid and Semi-active Structural Control: A Design and Implementation Handbook” ,John Wiley & Sons, Inc., New York, (2005).
6. Crandall, S.H., Mark, W.D., “Random Vibration in Mechanical Systems”, Academic Press, New York, pp.55-101, (1973).
7. Den Hartog, J.P., “Mechanical Vibrations, 4th edn”, McGraw Hill, New York, (1956).
8. Frahm, H., “Device for Damping Vibration of Bodies”, US Patent, No. 989958, (1909).
9. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao J.T.P., “Structural Control: Past, Present, and Future”, Journal of Engineering Mechanics (ASCE), Vol. 123, No. 9, pp. 897-971, (1997).
10. Hrovat, D., Barak, P., Rabins, M., “Semi-Active versus Passive or Active Tuned Mass Dampers For Structural Control”, Journal of Engineering Mechanics (ASCE), Vol. 109, No. 3, pp. 691-705, (1983).
11. Lin, C.C., Hu, C.M., Wang, J.F., Hu, R.Y., “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, Vol. 17, No. 3, pp. 367-376, (1994).
12. Lu, L.Y., Hsu, C.C., Yeh, S.W., “A Leverage-type Semi-active Isolation System for Seismic Structures in Near-fault Regions (in Chinese)” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 21, No. 3, pp. 319-338,(2009).
13. Lu, L.Y., Chu, S.Y., Yeh, S.W., “Modeling and experimental verification of a variable-stiffness isolation system using leverage mechanism.” Journal of Vibration and Control, published on-line, DOI: 10.1177/1077546310395976.
14. Lu, L.Y., Chu, S.Y., Yeh, S.W., Chung, L.L. “Seismic test of least input energy control with velocity feedback for variable-stiffness isolation systems.” Journal of Sound and Vibration, under review, submitted in June.
15. Lu, L.Y., Lin, T.K., Yeh, S.W., “Experiment and Analysis of A Leverage-type Stiffness Controllable Isolation System for Seismic Engineering” Earthquake Engineering and Structural Dynamics, Vol. 39, No. 15, 1711-1736,(2010).
16. Lu, L.Y., Lin, G.L., Kuo, T.C., “Stiffness controllable isolation system for near-fault seismic isolation” Earthquake Structures, Vol. 30, No. 3, 747-765,(2008).
17. Lu, L.Y., Lee, T.Y., Yeh, S.W., “Theory and experimental study for sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, published on-line, DOI: 10.1002/eqe.1106.
18. McNamara, R. J., ”Tuned Mass Dampers for Buildings”, Journal of the Structural Division (ASCE), Vol. 103, No. 9, pp. 1785-1798, (1977).
19. Nagarajaiah, S., “Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, hilbert transform, and short-term fourier transform.” Structural Control and Health Monitoring 2009, 16:800–841.
20. Palazzo, B., Petti, L., De Ligio, M., “Response of Base Isolated Systems Equipped with Tuned Mass Dampers to Random Excitations”, Journal of Structural Control, Vol. 4, No. 1, pp. 9-22, (1997).
21. Sack, R.L., Patten, W.N., “Semi-active Hydraulic Structural Control”, Proceedings of the International Workshop on Structural Control, Honolulu, Hawaii, USC Publication CE-9311, pp. 417-431, (1993).
22. Soong, T.T., “Active Structural Control: Theory and Practice”, John Wiley & Sons, Inc., New York, (1990).
23. Soong, T.T., Grigoriu, M., “Random Vibration of Mechanical and Structural Systems”, PTR Prentice Hall Englewood Cliffs, New Jersey, (1993).
24. Symans, M.D., Constanionu, M.C., “Semi-active Control Systems for Seismic Protection of Structures: A State-of-the-art Review”, Engineering Structures, Vol. 21, No. 6, pp. 469-487, (1999).
25. Uang, C.M., Bertero, V.V., “Evaluation of Seismic Energy in Structures” , Earthquake Engineering & Structural Dynamics., Vol. 19, No. 1, pp. 77.90, (1990).
26. Varadarajan, N., Nagarajaiah, S., “Wind Response Control of Building with Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition/Hilbert Transform”, Journal of Engineering Mechanics (ASCE), Vol. 130, No. 4, pp. 451-458, (2004).
27. Warburton G.B., “Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters”, Earthquake Engineering and Structural Dynamics, Vol. 10, No. 3, pp.381-401, (1982).
28. Wiesner, K. B., ”Tuned Mass Dampers to Reduce Building Wind Motion”, Convention and Exposition (ASCE), Boston, Mass., April 2-6, (1979).
29. Wong, K.K.F., “Seismic Energy Dissipation of Inelastic Structures with Tuned Mass Dampers”, Journal of Engineering Mechanics, Vol. 134, No. 2 , pp. 163.172, (2008).
30. Xu, K., Igusa, T., “Dynamic Characteristics of Multiple Substructures with Closely Spaced Frequencies”, Earthquake Engineering and Structural Dynamics, Vol. 21, No. 12, pp. 1059-1070, (1992).
31. Zhang, Y., Wilfred D., “Protecting Base-Isolated Structures from Near-Field Ground Motion by Tuned Interaction Damper”, Journal of Engineering Mechanics (ASCE), Vol. 128, No. 3, pp. 287-295, (2002).
32. 王哲夫,「被動調諧質量阻尼器之最佳設計暨應用」,國立中興大學土木工程研究所,碩士論文(1992)。
33. 王健,「變曲率滑動隔震防制近斷層震波之實驗與分析」,國立高雄第一科技大學營建工程研究所,碩士論文(2006)。
34. 吳政彥,「變曲率滑動隔震防制之實驗與分析」,國立高雄第一科技大學營建工程研究所,碩士論文(2004)。
35. 李文誠,「勁度可控式質量阻尼器之減振研究」,國立成功大學土木工程研究所,碩士論文 (2009)。
36. 林建宏,「狀態空間法於隔減震結構分析上之應用」,國立高雄第一科技大學營建工程研究所,碩士論文(2002)。
37. 侯佳玟,「最佳化時間延遲補償之擬混合型調諧質量阻尼器於結構振動控制之研究」,國立成功大學土木工程研究所,碩士論文(2007)。
38. 許朝畯,「槓桿式勁度可控隔震系統之實驗與分析」,國立高雄第一科技大學營建工程研究所,碩士論文 (2007)。
39. 陳昱如,「結構主動控制之時間延遲效應與對策」,國立中興大學土木工程研究所,碩士論文(1995)。
40. 彭致華,「槓桿式勁度可控質量阻尼器於結構減振之應用與實驗驗證」,國立成功大學土木工程研究所,碩士論文(2010)。
41. 葉士瑋,「最小輸入能量法於勁度可控式隔震系統之應用研究」,國立高雄第一科技大學營建工程研究所,碩士論文(2009)。
42. 盧煉元、林錦隆,中華民國發明專利,專利名稱:可控式隔震系統。專利字號:發明第I308610號,專利證書日期:98年4月11日,專利期限:民國2009年4月11日至2025年10月27日止。
43. 盧煉元、施明祥、張婉妮,「近斷層震波對滑動式隔震結構之影響評估」,結構工程,第十八卷,第四期,23-48頁(2003)。
44. 盧煉元、郭子敬、林錦隆,「勁度可控式滑動隔震系統」,中國土木水利工程學刊,第十八卷,第二期,265-278頁 (2006)。