| 研究生: |
呂冠廷 Lu, Kuan-Ting |
|---|---|
| 論文名稱: |
二氧化鈦/二氧化矽複層空心球之製程參數探討及其於蛋白石光子晶體之應用 Synthesis of TiO2/SiO2 hierarchical hollow spheres and their application in opal structurated photonic crystal |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 二氧化鈦 、二氧化矽 、空心球 、蛋白石 、光子晶體 |
| 外文關鍵詞: | TiO2, SiO2, hollow spheres, opal, photonic crystal |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以合成可用於製備蛋白石結構光子晶體之二氧化鈦空心球為目標,分別嘗試溶膠-凝膠法、植入法以及介面活性劑輔助化學沈澱法,將二氧化鈦披覆於PMMA模板球表面。實驗結果發現,溶膠-凝膠法與植入法所生成之二氧化鈦空心球均勻性不佳,無法應用於排列蛋白石光子晶體。另一方面,利用界面活性劑gelatin B進行PMMA球表面修飾,輔助化學沈澱法則可成功合成出均勻且穩固之二氧化鈦空心球。本研究深入探討介面活性劑輔助化學沈澱法之製程參數影響,包括四氯化鈦水溶液濃度、氨水濃度、反應溫度等,尋求最佳製成條件,獲得均勻分散、粒徑均一之二氧化鈦空心球,並利用不同gelatin B比例本研究可以合成出殼層厚度分別為33 - 49 nm之二氧化鈦空心球。為改善二氧化鈦空心球之表面粗糙度以降低自組裝過程中之摩擦力,使用二氧化矽再包覆二氧化鈦表面,製成滿足光子晶體粒徑均一條件( [ D80 - D20 ] / D50 < 20% )且殼層厚度分別為46 - 56 nm之二氧化鈦/二氧化矽複層空心球。利用等溫誘導加熱自組裝法可成功將二氧化鈦/二氧化矽複層空心球排列成蛋白石光子晶體,由吸收光譜得知,可成功製備出光子能隙波長1679 – 1903 nm的二氧化鈦/二氧化矽複層空心球蛋白石光子晶體,且所得光子晶體之能隙符合理論值,證實製備之樣品確實具有光子晶體之光學特性。
We reported the hard template method with chemical precipitation assisted by gelatin B as surfactant to synthesize uniform and stable TiO2 hollow spheres and expected they can be used to arrange opal structurated photonic crystal. This study thoroughly explored the influence of the process parameters of the surfactant-assisted chemical precipitation method, including the concentration of TiCl4 aqueous solution, the concentration of ammonia, the reaction temperature, and the ratio of gelatin B, etc., and obtained TiO2 shells of different thicknesses. However, the surface of TiO2 hollow spheres is too rough to self-assemble opal photonic crystal. Therefore, in order to improve the surface roughness and reduce the friction force during the self-assembly process, the surface is coated again with SiO2 to form theTiO2/SiO2 hierarchical hollow spheres. Through using the isothermal heating evaporation-induced self-assembly method (IHEISA), we successfully arranged the TiO2/SiO2 hierarchical hollow spheres into opal photonic crystal. The experimental value of the absorption spectrum accorded with the theoretical photonic band gap, confirming that the prepared sample does have the optical properties of photonic crystal.
[1] M. Imada, L. H. Lee, M. Okano, S. Kawashima, S. Noda (2006), Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths. Applied Physics Letters, 88(17), 171107.
[2] 欒丕綱 (2015年5月),光波操縱師─神奇的光子晶體,科學月刊,545期
[3] E. Yablonovitch (2001), Photonic crystals : semiconductors of light. Scientific American, Vol. 285(6), 47-51, 54-5.
[4] S. John (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical review letters, 58(23), 2486.
[5] 魏銘學 (民109)。以多孔之SiO2空心球製備蛋白石光子晶體於化學感測器之應用。國立成功大學資源工程學系研究所
[6] 趙凱華 (2004年),光學,高等教育出版社
[7] D. J. Griffiths (1999). Introduction to electrodynamics, Prentice Hall, 3rd ed., Chap2, 87-90, Chap5, 240-242, Chap9, 364-415.
[8] E. Hecht (1998). Optics, Adisson Wesley, 3rded, Chap4, 85-147.
[9] L. V. Sangani, M. A. Mohiddon, G. Rajaram, M. G. Krishna (2020). Optical confinement in TiO2 waveguides fabricated by resist free electron beam lithography. Optics & Laser Technology, 123, 105901.
[10] I. Hegeman, M. Dijkstra, F. B. Segerink, W. Lee, S. M. Garcia-Blanco (2020). Development of low-loss TiO2 waveguides. Optics express, 28(5), 5982-5990.
[11] R. Foulady-Dehaghi, M. Behpour (2020). Visible and solar photodegradation of textile wastewater by multiple doped TiO2/Zn nanostructured thin films in fixed bed photoreactor mode. Inorganic Chemistry Communications, 117, 107946.
[12] R. da Silva Cardoso, S. M. de Amorim, G. Scaratti, C. D. Moura-Nickel, R. P. M. Moreira, G. L. Puma, R. D. F. P. M. Moreira (2020). Structural, optical and photocatalytic properties of erbium (Er3+) and yttrium (Y3+) doped TiO2 thin films with remarkable self-cleaning super-hydrophilic properties. RSC Advances, 10(29), 17247-17254.
[13] X. Zhang, Y. Liu, X. Ma, F. Jin, B. Abulimiti, M. Xiang (2020). Tuning the optical properties of (TiO2)2 via the electric field. Optik, 221, 165395.
[14] R. Q. Nafil, M. S. Majeed (2020). Frequency doubling by nonlinearity of TiO2 nanomaterial. Heliyon, 6(3), e03649.
[15] S. D. Bukkitgar, N. P. Shetti, R. S. Malladi, K. R. Reddy, S. S. Kalanur, T. M. Aminabhavi (2020). Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. Journal of Molecular Liquids, 300, 112368.
[16] T. Alasaarela, L. Karvonen, H. Jussila, A. Säynätjoki, S. Mehravar, R. A. Norwood, H. Lipsanen (2013). High-quality crystallinity controlled ALD TiO2 for waveguiding applications. Optics letters, 38(20), 3980-3983.
[17] C. C. Evans, K. Shtyrkova, O. Reshef, M. Moebius, J. D. Bradley, S. Griesse-Nascimento, E. Mazur (2015). Multimode phase-matched third-harmonic generation in sub-micrometer-wide anatase TiO2 waveguides. Optics express, 23(6), 7832-7841.
[18] P. S. Basavarajappa, S. B. Patil, N. Ganganagappa, K. R. Reddy, A. V. Raghu, C. V. Reddy (2020). Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy, 45(13), 7764-7778.
[19] X. He, A. Wang, P. Wu, S. Tang, Y. Zhang, L. Li, P. Ding (2020). Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review. Science of The Total Environment, 140694.
[20] Z. U. Rahman, N. Wei, M. Feng, D. Wang (2019). TiO2 hollow spheres with separated Au and RuO2 co-catalysts for efficient photocatalytic water splitting. International Journal of Hydrogen Energy, 44(26), 13221-13231.
[21] N. Kanjana, W. Maiaugree, P. Poolcharuansin, P. Laokul (2020). Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres. Journal of Materials Science & Technology, 48, 105-113.
[22] H. Razavi-Khosroshahi, S. Wenhao, M. Fuji (2020). Synthesis of TiO2 hollow nanoparticles with different shell thickness and effect of structure on photocatalytic activity. Solid State Sciences, 103, 106179.
[23] J. Livage, M. Henry, C. Sanchez (1988). Progress in solid state chemistry, 18, 259.
[24] H. Duong Ngoc, D. Mai Xuan, T. Mai Van (2020). Effect of pH on the formation of amorphous TiO2 complexes and TiO2 anatase during the pyrolysis of an aqueous TiCl4 solution. Catalysts, 10(10), 1187.
[25] H. Lu, J. Zhong, C. Ji, J. Zhao, D. Li, R. Zhao, C. M. Li (2020). Fabricating an optimal rutile TiO2 electron transport layer by delicately tuning TiCl4 precursor solution for high performance perovskite solar cells. Nano Energy, 68, 104336.
[26] T. H. Wang, A. M. Navarrete-López, S. Li, D. A. Dixon, J. L. Gole (2010). Hydrolysis of TiCl4: initial steps in the production of TiO2. The Journal of Physical Chemistry A, 114(28), 7561-7570.
[27] S. J. Kim, S. D. Park, Y. H. Jeong, S. Park (1999). Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution. Journal of the American Ceramic Society, 82(4), 927-932.
[28] F. Caruso, R. A. Caruso, H. Möhwald (1998). Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 282, 1111-14.
[29] A. Abolhosseini Shahrnoy, A. R. Mahjoub, S. Shokrollahi, N. Ezzati, K. Elsner, C. T. Koch (2020). Step‐by‐step synthesis of copper(I) complex supported on platinum nanoparticle‐decorated mesoporous silica hollow spheres and its remarkable catalytic performance in Sonogashira coupling reaction. Applied Organometallic Chemistry, 34(7), e5645.
[30] F. Chen, Z. Chen, Z. Dai, S. Wang, Z. Zhang, D. Chen (2020). Self-templating synthesis of carbon-encapsulated SnO2 hollow spheres: A promising anode material for lithium-ion batteries. Journal of Alloys and Compounds, 816, 152495.
[31] A. M. Zardkhoshoui, M. M. Ashtiani, M. Sarparast, S. S. H. Davarani (2020). Enhanced the energy density of supercapacitors via rose-like nanoporous ZnGa2S4 hollow spheres cathode and yolk-shell FeP hollow spheres anode. Journal of Power Sources, 450, 227691.
[32] S. M. Rajput, M. Kuddushi, A. Shah, D. Ray, V. K. Aswal, S. K. Kailasa, N. I. Malek (2020). Functionalized surfactant based catanionic vesicles as the soft template for the synthesis of hollow silica nanospheres as new age drug carrier. Surfaces and Interfaces, 20, 100596.
[33] J. Ji, C. Deng, X. Liu, J. Qin (2020). Fabrication of porous polyimide hollow microspheres through O/W/O multiple emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 591, 124537.
[34] F. Ma, J. Lu, L. Pu, W. Wang, Y. Dai (2020). Construction of hierarchical cobalt-molybdenum selenide hollow nanospheres architectures for high performance battery-supercapacitor hybrid devices. Journal of colloid and interface science, 563, 435-446.
[35] Z. Z. Yang, Z. W. Niu, Y. F. Lu, Z. B. Hu, C. C. Han (2003). Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angewandte Chemie, 42, 1943-45.
[36] V. R. A. Ferreira, M. A. Azenha, C. M. Pereira, A. F. Silva (2021). Preparation of molecularly imprinted hollow TiO2 microspheres for selective photocatalysis. Chemical Engineering Journal Advances, 5, 100071.
[37] H. Fu, M. Gong, X. Ning, X. Yang, X. An, Q. Zou, D. Han (2020). Au modified nanosheet-branched TiO2 hollow spheres exhibiting superior performance of adsorption and solar-light-driven photocatalysis. Powder Technology, 376, 593-603.
[38] Q. Jiang, J. Huang, B. Ma, Z. Yang, T. Zhang, X. Wang (2020). Recyclable, hierarchical hollow photocatalyst TiO2@ SiO2 composite microsphere realized by raspberry-like SiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 125112.
[39] 陳國書 (民99)。前驅物植入方式合成無稽材質空心微球之機構研究。國立中興大學材料科學與工程學系研究所
[40] 王彥文 (民97)。以植入前驅物於膠體模板方式合成單一分散中空氧化鋁暨其他無機物微球之研究。國立中興大學材料科學與工程學系研究所
[41] 吳信霖 (民98)。以植入法合成氧化鐵中空微球與藥物包覆之研究。國立中興大學材料科學與工程學系研究所
[42] J. D. Joannopoulos, P. R. Villeneuve, S. Fan (1997). Photonic crystals. Solid State Communications, 2(102), 165-173.
[43] J. D. Joannapolous, R. D. Meade, J. N. Winn (1995). Photonic crystals: Molding the flow of light.
[44] W. Gao, H. Owens, M. Rigout (2018). Structural colours from self-assembled silica nanoparticles for textile coloration. In Advanced Materials and their Applications-Micro to nano scale: One Central Press.
[45] Y. Zhao, L. Shang, Y. Cheng, Z. Gu (2014). Spherical colloidal photonic crystals. Accounts of chemical research, 47(12), 3632-3642.
[46] W. Gao, M. Rigout, H. Owens (2016). Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals. Journal of Nanoparticle Research, 18(12), 1-10.
[47] X. Q. Yu, Z. Zhu, X. Wu, G. Li, R. Cheng, R. K. Qing, S. Chen (2020). Robust hydrophobic veova10-based colloidal photonic crystals towards fluorescence enhancement of quantum dots. Nanoscale, 12(38), 19953-19962.
[48] H. Li, P. Wu, G. Zhao, J. Guo, C. Wang (2021). Fabrication of industrial-level polymer photonic crystal films at ambient temperature based on uniform core/shell colloidal particles. Journal of Colloid and Interface Science, 584, 145-153.
[49] Z. Cai, Z. Li, S. Ravaine, M. He, Y. Song, Y. Yin, A. Zhang (2021). From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chemical Society Reviews.
[50] 宋明哲 (民96)。複合式單胞光子晶體光纖設計與分析。國立陽明交通大學電子物理研究所
[51] P. G. Hewitt (1998). Conceptual physics, eight edition. Wesley, 27, 496.
[52] P. A. Hiltner, I. M. Krieger (1969). Diffraction of light by ordered suspensions. The Journal of Physical Chemistry, 73(7), 2386-2389.
[53] L. Li, J. Li, T. Meng, Z. Liu, H. Zhou, J. Zhu, J. Shi (2021). Diethylamine fluorescence sensor based on silica hollow sphere photonic crystals. Analytical Methods, 13(19), 2189-2195.
[54] K. Zhong, L. Liu, J. Lin, J. Li, S. Van Cleuvenbergen, W. Brullot, K. Clays (2016). Bioinspired robust sealed colloidal photonic crystals of hollow microspheres for excellent repellency against liquid infiltration and ultrastable photonic band gap. Advanced Materials Interfaces, 3(18), 1600579.
[55] S. W. Jeon, K. Kwon, S. W. Han, Y. S. Kim, Y. W. Cho, H. T. Lim, H. Jung (2020). Diamond photonic crystal mirror with a partial bandgap by two 2D photonic crystal layers. Optics Express, 28(26), 39048-39057.
[56] K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, A. Imamoğlu (2005). Tuning photonic crystal nanocavity modes by wet chemical digital etching. Applied Physics Letters, 87(2), 021108.
[57] M. L. Hsieh, S. Y. Chen, A. Kaiser, Y. J. Yan, B. Frey, I. Bhat, S. Y. Lin (2019). A low cost and large-scale synthesis of 3D photonic crystal with SP2 lattice symmetry. AIP Advances, 9(8), 085206.
[58] C. Jiaying, L. Tiantian, X. Yingqi, X. Binjie, G. Weihong (2021). Low angle-dependent structural colours from redispersion of silica photonic crystal film. In Journal of Physics: Conference Series, 1790(1), 12006.
[59] J. Yu, C. H. Lee, C. W. Kan, S. Jin (2020). Fabrication of structural-coloured carbon fabrics by thermal assisted gravity sedimentation method. Nanomaterials, 10(6), 1133.
[60] Q. Zhou, P. Dong, L. Liu, B. Cheng (2005). Study on the sedimentation self-assembly of colloidal SiO2 particles under gravitational field. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 253(1-3), 169-174.
[61] M. M. Thomas, P. R. Chandran, V. V. Vipin, A. P. Mohamed, P. Kingshott, S. Pillai (2021). Core-shell based responsive colloidal photonic crystals for facile, rapid, visual detection of acetone. Reactive and Functional Polymers, 158, 104779.
[62] J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K.Burkert, U. Jonas (2008). Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition. Journal of Materials Chemistry, 18(9), 981-988.
[63] P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin (1999). Single-crystal colloidal multilayers of controlled thickness. Chemistry of Materials, 11(8), 2132-2140.
[64] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J Norris (2001). On-chip natural assembly of silicon photonic bandgap crystals. Nature, 414(6861), 289-293.
[65] 蔡佩樺 (民99)。以等溫加熱蒸發誘導自組裝法製備一元及二元膠體晶體之探討。國立成功大學資源工程學系研究所
[66] M. Golosovsky, Y. Saado, D. Davidov (1999). Self-assembly of floating magnetic particles into ordered structures: A promising route for the fabrication of tunable photonic band gap materials. Applied Physics Letters, 75(26), 4168-4170.
[67] L. He, Y. Hu, H. Kim, J. Ge, S. Kwon, Y. Yin (2010). Magnetic assembly of nonmagnetic particles into photonic crystal structures. Nano letters, 10(11), 4708-4714.
[68] A. T. Skjeltorp (1983). One-and two-dimensional crystallization of magnetic holes. Physical Review Letters, 51(25), 2306.
[69] R. M. Erb, H. S. Son, B. Samanta, V. M. Rotello, B. B. Yellen (2009). Magnetic assembly of colloidal superstructures with multipole symmetry. Nature, 457(7232), 999-1002.
[70] X. Huang, J. Zhou, M. Fu, B. Li, Y. Wang, Q. Zhao, L. Li (2007). Binary colloidal crystals with a wide range of size ratios via template-assisted electric-field-induced assembly. Langmuir, 23(17), 8695-8698.
[71] M. Ammam (2012). Electrophoretic deposition under modulated electric fields: a review. RSC advances, 2(20), 7633-7646.
[72] Q. Yan, Z. Zhou, X. S. Zhao (2005). Inward-growing self-assembly of colloidal crystal films on horizontal substrates. Langmuir, 21(7), 3158-3164.
[73] 李柏緯 (民100)。以滴定塗裝法製備膠體晶體及其性質之探討。國立成功大學資源工程學系研究所
[74] B. Y. Guan, L. Yu, J. Li, X. W. D. Lou (2016). A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties. Science advances, 2(3), e1501554.
[75] M. Zou, F. Xiong, A. S. Ganeshraja, X. Feng, C. Wang, T. Thomas, M. Yang (2017). Visible light photocatalysts (Fe, N) : TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO2 mesoporous microspheres. Materials Chemistry and Physics, 195, 259-267.
[76] D. Chen, L. Cao, F. Huang, P. Imperia, Y. B. Cheng, R. A. Caruso (2010). Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14−23 nm). Journal of the American Chemical Society, 132(12), 4438-4444.
[77] B. Krishnakumar, R. Hariharan, V. Pandiyan, A. Aguiar, A. J. Sobral (2018). Gelatin-assisted g-TiO2/BiOI heterostructure nanocomposites for azo dye degradation under visible light. Journal of environmental chemical engineering, 6(4), 4282-4288.
[78] F. Loosli, P. Le Coustumer, S. Stoll (2015). Impact of alginate concentration on the stability of agglomerates made of TiO2 engineered nanoparticles: Water hardness and pH effects. Journal of Nanoparticle Research, 17(1), 1-9.
[79] A. Bendavid, P. J. Martin, H. Takikawa (2000). Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin solid films, 360(1-2), 241-249.
校內:2026-09-01公開