簡易檢索 / 詳目顯示

研究生: 陳嘉淵
Chen, Chia-Yuan
論文名稱: 2-鹵化乙醇在Cu(100)表面上的熱化學研究
The thermal chemistry of β-halohydrins on Cu(100) surface
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 103
中文關鍵詞: 2-碘乙醇超高真空系統2-溴乙醇反射式吸收紅外線光譜2-氟乙醇銅(100)單晶2-鹵化乙醇2-氯乙醇程序控溫反應/脫附
外文關鍵詞: ClEtOH, IEtOH, Cu(100), TPR/D, FEtOH, RAIRS, halohydrins, BrEtOH, UHV
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    本篇論文是以程序控溫反應/脫附(TPR/D)和反射式吸收紅外光譜(RAIRS)來研究在超高真空系統中β-halohydrins (XCH2CH2OH, X=F,Cl,Br,I)在Cu(100)表面上的吸附與反應。擁有一個OH基的乙醇在Cu(100)上進行可逆吸附而無法分解;在鹵化乙烷方面,經由碳鹵鍵的斷裂,在表面上形成鹵素和乙基,乙基在表面上進行β-hydride elimination形成乙烯;至於氯化烷類則要等到7個碳的長度才能使C-Cl鍵在銅表面上斷裂。在此我們要研究同時擁有鹵素及OH基的β-halohydrins的熱化學反應。在TPR/D的實驗中2-碘乙醇會分解產生水、乙烯、乙醇、乙醛、丁烷及1,4-dioxane,但是在未滿單層分子吸附量之下,並無發現分子性脫附;在2-溴乙醇的例子中,最主要脫附的產物為水、乙烯、乙醛、1,4-dioxane及溴乙烷,而且我們也未發現單層分子性脫附;在2-氯乙醇的例子裡,其生成的產物不同於2-碘乙醇和2-溴乙醇,在TPR/D中顯示乙烯、氯乙烯、少許水及單層分子性脫附等熱化學產物;在2-氟乙醇的例子中,其水、乙烯及1,4-dioxane等產物相對量較其他的低。在RAIRS的實驗中,發現2-碘乙醇在低溫時會反應形成hydroxyethyl的物種,到200K時便形成(–OCH2CH2–)的中間体;在2-溴乙醇的例子中,我們並未發現hydroxyethyl的中間体,但在200K時也觀察到(–OCH2CH2–)中間体的形成;在2-氯乙醇與2-氟乙醇中,我們並未發現任何穩定的中間体,在低覆蓋量中,它們是以gauche form吸附在表面上。

    Abstract

    Temperature-programmed reaction/desorption (TPR/D) and reflection-absorption infrared spectroscopy have been employed to investigate the adsorption and reactions of β-halohydrins (XCH2CH2OH, X=F,Cl,Br,I) on a Cu(100) surface under ultrahigh vacuum condition. With a OH group, ethanol adsorbs reversibly on Cu(100). In the case of halogenated ethane, ethyl iodide and ethyl bromide decompose via carbon-halogen bond scission to generate halogen atoms and ethyl groups on the surface. Ethyl groups undergo β-hydride elimination to form ethylene. Unlike alkyl iodide and bromide, C-Cl bond dissociation of alkyl chloride dose not occur until the chain length reaches seven carbons. Here we study the thermal chemistry of β-halohydrins with the two functional groups of OH and X. In TPR/D experiments 2-iodoethanol decomposes to produce water, ethylene, ethanol, acetaldehyde, butane, and 1,4-dioxane. But we can not find molecular desorption at submonolayer coverage. For the 2-bromoethanol, the main desorbing products are water, ethylene, acetaldehyde, 1,4-dioxane, and bromoethane. We can not find the monolayer molecular desorption either. In the 2-chloroethanol case, the product distribution is different from those of 2-iodoethanol and 2-bromoethanol. TPR/D shows the thermal products of ethylene, chloroethene, some water, and monolayer molecular desorption. For the 2-fluoroethanol, the products of water, ethylene and 1,4-dioxane is relatively low. In RAIRS experiments, it is found that 2-iodoethanol reacts at relatively low temperature to form hydroxyethyl specie. At 200K, it forms the surface oxametallacycle (–OCH2CH2–) intermediate. In 2-bromoethanol case, we can not find hydroxyethyl intermediate on the surface, but obverse the oxametallacycle intermediate at 200K. In 2-chloroethanol and 2-fluoroethanol case, we do not find any stable intermediate. At low coverages, they adsorbs on the surface in gauche form.

    目錄 第一章、緒論 1 第二章、表面研究之分析技術 2.1 歐傑電子能譜 5 2.2 低能量電子繞射 10 2.3 程式控溫反應/脫附 12 2.4 反射式紅外光譜儀 14 第三章、實驗系統與方法 3.1 超高真空系統 17 3.2 清潔Cu(100)單晶表面的製備 19 3.3 藥品與藥品的前處理 20 第四章、結果與討論 4.1 ICH2CH2OH在Cu(100)表面上的吸附及反應 21 4.1.1 程序控溫反應/脫附實驗 21 4.1.2 反射式吸收紅外光光譜實驗 38 4.2 BrCH2CH2OH在Cu(100)表面上的吸附及反應 50 4.2.1 程序控溫反應/脫附實驗 50 4.2.2 反射式吸收紅外光光譜實驗 61 4.3 ClCH2CH2OH在Cu(100)表面上的吸附及反應 70 4.3.1 程序控溫反應/脫附實驗 70 4.3.2 反射式吸收紅外光光譜實驗 78 4.4 FCH2CH2OH在Cu(100)表面上的吸附及反應 85 4.4.1 程序控溫反應/脫附實驗 85 4.4.2 反射式吸收紅外光光譜實驗 92 第五章、結論 99 參考文獻 101

    參考文獻

    1.J.-L. Lin, A.V. Teplyakov,and B.E. Bent, J. Phys. Chem. 100, 10721(1996)
    2.J.-L. Lin and B.E Bent, J. Phys. Chem. 97, 9713(1993)
    3.J.-L. Lin and B.E Bent, J. Am. Chem. Soc. 115, 2849(1993)
    4.J.-L. Lin and B.E Bent, J. Phys. Chem. 96, 8529(1992)
    5.Madix, R.J. Adv. Catal. 29, 1(1980)
    6.Wachs, I. E.; Madix, R. J, Appl. Surf. Sci. 1, 303(1978)
    7.C.M. Friend and X. Xu, Annu, Rev. Phys. Chem. 42, 251(1991)
    8.Q. Dai and A.J. Gellman, J. Phys. Chem. 97, 10783(1993)
    9.V. W. Day, S. P. Lockledge, W. G. Klemperer, and D. J. Main, J. Am.Chem. Soc. 112, 2031(1990)
    10.D. P. Klein, R. G. Bergman, and J. C. Hayes, J. Am. Chem. Soc. 110, 3704(1988)
    11.G. A. Vaughn, R. T. Lum, G. L. Hillhouse, S. L. Buchwald, and A. L. Rheingold, J. Am. Chem. Soc. 110, 7215(1988)
    12.R.Shekhar and M. A. Barteau , Surf. Sci. 55, 348(1996)
    13.Lambert, R.M. and Ormerod, R. M, Langmuir. 10, 730(1994)
    14.N.F.Brown and M. A. Barteau, Surf. Sci. 6, 298(1993)
    15.G. Wu, D. Stacchiola, M. Kaltchev,and W. T. Tysoe, Surf. Sci. 463, 81(2000)
    16.G. S. Jones and M. A. Barteau, J. Vac. Sci. Technol. A 15, 1667(1997)
    17.G. S. Jones and M. A. Barteau, J. Am. Chem. Soc. 120, 3196(1998)
    18.N. F. Brown and M. A. Barteau, J. Phys. Chem. 98, 12727(1994)
    19.M. A. Semones and D. G. Peters, J. Electrochem. Soc. 147, 260(2000)
    20.A. L. Butler and D. G. Petters, J. Electrochem. Soc. 144, 4212(1997)
    21.C. C. Cumbo, U. S. Pat. 4,324,625(1982); Chem. Abstr. 97, 24656(1983)
    22.S. Tomura, M. Ikeda, and J. Aoshima, Jpn. Pat. 59,197,580(1984); Chem. Abstr. 102, 86472(1985)
    23.M. Fedurco, L. Coppex, and J. Augustynski, J. Phys. Chem. B. 106, 2625(2002)
    24.J. C.Vickerman, Surface Analysis-The Principle Techniques, John Wiley & Sons. New York, p43-98, 1997.
    25.J. C.Vickerman, Surface Analysis-The Principle Techniques, John Wiley & Sons. New York, p99-133, 1997.
    26. G. Ertl and J. Kuppers, Low Energy Electrons and Surface Chemistry, Verlag Chemie, Germany, 1974. c
    27. 林敬二, 林宗義, 儀器分析(下), 美亞書版, 第384頁, 1994年
    28. M. Prutton, Surface Physics, Oxford University Pres, 1983
    29. 沈青嵩, 科儀新知, 第十九卷第二期, 第66頁, 八十六年十月.
    30. J. C.Vickerman, Surface Analysis-The Principle Techniques, John Wiley & Sons, New York, p323-338, 1997.
    31. 國立成功大學化學所 李明羲碩士論文 2001
    32. J. C. Vickerman, Surface Analysis, Wiley & Sons, New York, p278, 1997
    33. I.Kovacs and F.Solymosi, J. Phys. Chem. B. 101, 5397(1977)
    34. J.-J.Chen and N.Winograd, Surf. Sci. 314, 188(1994)
    35. S.Tjandra and F.Zaera, Surf. Sci. 289, 255(1993)
    36. M. K.Weldon and C. M.Friend, Surf. Sci. 321, L202(1994)
    37. Z.-M.Liu, X.-L.Zhou, D. A.Buchanan, J.Kiss, J. M.White, J. Am. Chem. Soc. 114,2031(1992)
    38.Solymosi, F.and Revesz, K. Surf. Sci. 280, 38(1993)
    39.Klivenyi, G. and Solymosi, F. Surf. Sci. 342, 168(1995)
    40. E. Wyn-Jones and W. J. Orgille-thomas, J. Mol. Struct. 1, 79(1967)
    41. Homamen, L. Spectrochim. Acta, 39A, 77(1983)
    42. P. J. Krueger and H.D. Mettee, Can. J. Chem. 46, 2917(1967)
    43. P. Buckley, P.A. Giguere, and D. Yamamoto, Can. J. Chem. 46, 2917(1968)
    44. A. Almenningen, O. Bastiansen, L. Fernholt, and K. Hedberg, Acta Chem. Scand. 25, 1946(1971)
    45. K. Hangen and K. Hedberg, J. Am. Chem. Soc. 8263(1973)
    46. R.C. Griffith and J.D. Roberts. Tetrahedron Ltters. 39, 3499(1974)
    47. G. Crowder and D. Tennant. J. Fluor. Chem. 6, 279(1975)
    48. M. Perttila, J. Murto,and L. Halonen, Spectrochim acta. 34A, 469(1978)
    49. S.C. Street and A.J. Gellman. J. Phys. Chem. 100, 8338(1996)
    50. M.Petrilla, J.Murto, A. Kivinen, K.Turunen, Spectrochim. Acta. 34A, 9(1978)

    下載圖示 校內:2003-07-09公開
    校外:2004-07-09公開
    QR CODE