簡易檢索 / 詳目顯示

研究生: 黃冠達
Huang, Kuan-Da
論文名稱: 電滲流流場分析與離子濃度分佈探討
Analysis of Electroosmotic Flow Field and Its Ionic Concentration Distribution
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 85
中文關鍵詞: 離子濃度電滲流
外文關鍵詞: Nernst Planck, Poisson Boltzmann, EOF
相關次數: 點閱:121下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要以數值模擬方式探討微流體在電滲效應下之流體行為,並細部探討溶液內之離子分佈,所使用的物理模式包括(1)描述離子濃度分佈之Nernst-Planck方程式、(2)描述壁面電雙層之Poisson方程式、(3)描述外加電場分佈之Laplace方程式、及(4)描述電滲流流場之Narvier-Stokes方程式,並在物體力部分加入電驅動力之修正。
    在電滲效應內,主要是來自淨電荷密度所反應的壁面電位勢,以及外加電壓之電場電位勢的交互作用,本文將針對這兩種電位勢強度作一關聯性的比較,以分析離子分佈受流場與電場所影響之範圍,並以直角彎管幾何模型進行模擬,發現在一般的電場強度下緩衝液濃度為 時,壁面電位勢效應會小於外加電場效應的狀況,特別在管道彎曲的區域內,離子分佈就不再單純呈現Boltzmann分佈,這會影響速度上的變化,在直角彎管部分,內側流速會有減緩的現象;另外,在本文後段探討封閉管道之電滲流流場,由於受到封閉端的影響而產生壓力上的變化,會在內部產生兩個上下對稱的渦漩現象,對此一流場結構,我們考慮電雙層厚度對速度分佈影響之效應,並詳細地分析封閉管道流場機制。

    This study focuses on the investigation of the electroosmotic fluidic behavior and discusses its ionic distribution of bulk solution in details. The physical models are based on (1) the Nernst-Planck equations for the ionic concentration distribution, (2) the Poisson equation for electrical double layer (EDL) potential, (3) the Laplace equation for the externally applied electrostatic field, and (4) the Nariver-Stokes equations modified for the electroosmotic flow to include the body force effect induced by the electro-kinetic force.
    The major force driven of the electroosmotic flow (EOF) is due to the interaction between the zeta potential that is due to the net charge density and the external electrical potential. In this study, we make a comparison between the two different potential effects and try to find a range of the variation of ionic concentration distribution induced by the flow and electrical field. In numerical process, we compute ionic variation by modeling the flow over a right-angled elbow. For a bulk concentration, the zeta potential effect near the wall is less than the external electrical potential effect. The ions in diffuse layer are no longer presented by the Boltzmann distribution in this condition, particularly near the right-angled region. The inner side velocity is retarded by the variation of the ionic distribution in the region. In addition, the EOF flow field in a closed cavity is also studied in the last chapter. The pressure rise induced by the closed ends forms the flow field to be a parabolic velocity profile. It creates two symmetric vortices at top and bottom in the cavity. We further study how the EDL thickness affects the velocity profile and analyze its mechanism in details.

    目 錄 中文目錄 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 符號說明 Ⅹ 第一章、 序論 1 1-1、 前言 1 1-2、 電動現象起源與分類 2 1-3、 電雙層形成機制 5 1-4、 電雙層內之離子分佈 7 1-5、 電滲流形成機制 8 1-6、 研究動機 9 1-7、 本文架構 9 第二章、 以Boltzmann方程式之電雙層分佈和流場方程式 12 2-1、 序論 12 2-2、 基本假設 13 2-3、 描述電雙層分佈之Poisson-Boltzmann方程式 13 2-4、 描述外加電場分佈之Laplace方程式 16 2-5、 描述電滲流流場之Navier-Stokes方程式 17 2-6、 邊界條件設定 21 2-7、 程式驗證 22 第三章、 以Nernst-Planck假設描繪離子分佈之流場方程式 24 3-1、 序論 24 3-2、 基本假設 25 3-3、 描述正負離子分佈之Nernst-Planck方程式 25 3-4、 描述壁面電位勢之Poisson方程式 27 3-5、 描述電滲流流場之Navier-Stokes方程式 28 3-6、 邊界條件設定 32 3-7、 程式驗證 33 第四章、 電滲流流場與離子分佈分析 35 4-1、 序論 35 4-2、 參數設定 36 4-3、 計算之幾何與邊界條件 36 4-4、 管道之入口效應與彎管效應 38 4-5、 電場強度與壁面電位勢效應比 40 4-6、 封閉管道之電滲流流場形成與分析 42 4-6-1、 封閉空穴內之流場與壓力升降 43 4-6-2、 Poisson-Boltzmann與Nernst-Planck方程式之比較 45 4-7、 結果與討論 47 第五章、 總結與建議 49 5-1、 總結 49 5-1-1、 Poisson-Boltzmann與Nernst-Planck方程式之比較 49 5-1-2、 彎管效應 50 5-1-3、 封閉流場之循環現象 50 5-2、 建議 50 5-2-1、 數學模式方面 50 5-2-2、 電滲流流場之焦耳熱效應 51 5-2-3、 封閉流場結構應用 52 參考文獻 53 附圖 58 附錄A、B 78 自述 86

    [1] A. Manz, N. Graber, and H. M. Widmer, “Miniaturized Total Chemical
    Analysis systems: A Novel Concept for Chemical Sensing,” Sensors and
    Actuators, B1, 244-248,1990.

    [2] W. B. Russel, D.A. Saville, and W.R. Schowalter, “Colloidal Dispersions,
    Cambridge Monographs on Mechanics and Applied Mathematics,“
    Cambridge University Press, Cambridge, 1989.

    [3] R. J. Hunter, “Zeta Potential in Colloid Science: Principles and
    Applications,” Academic Press, New York, 1981.

    [4] R. F. Probstein, “Physicochemical Hydrodynamics: An Introduction,” 2nd
    ed., John Wiley and Sons, New York, 1994.

    [5] S. Hjerten, “Free Zone Electrophoresis,” Chromatorgr. Rev., 9, 122-219,
    1967.

    [6] J. W. Jorgenson, and K. D. Lukacs, “Zone Electrophoresis in Open-Tubular
    Glass Capillaries,” Anal. Chem., 53, 1298-1302, 1981.

    [7] S. Terabe. K. Otsuka, A. Tsuchiya, and T. Ando, “Electrokinetic
    Separation with Micellar Soulution and Open-Tubular Capillaries,” Anal.
    Chem., 567, 111-113, 1984.

    [8] S. Hjerten, J. L. Liao, K. J. Yao, “Theoretical and Experimental Study of
    High Performance Electrophoretic Mobilization of Isoelectric Focused
    Protein Zones,” J. Chromatogr., 387, 127-138, 1987.

    [9] A. S. Cohen, B. L. Karger, "High-Performance Sodium Dodecyl Sulfate
    Polyacrylamide Gel Capillary Electrophoresis of Peptides and Proteins," J.
    Chromatogr., 397, 409-417, 1987.

    [10] C. Yang, and D. Li, “Analysis of Electrokinetic Effects on the Liquid
    Flow in the Rectangular Microchennels,“ J.Colloid Interface Sci, 248,
    524-527, 2002.

    [11] H. J. Keh, and H.C. Tseng, “Transient Electrokinetic Flow in Fine
    Capillaries,” J.Colloid Interface Sci., 242, 450-459, 2001.

    [12] J. P. Hsu, C. Y. Kao, S. Tseng, and C. J. Chen, “Electrokinetic Flow
    through an Elliptical Microchannel: Effects of Aspect Ratio and Electrical
    Boundary Conditions,” J.Colloid Interface Sci., 248, 176-184, 2002.

    [13] Y. J. Kang, C. Yang, and X. Y. Huang, ”Electroosmotic Flow in a
    Capillary Annulus with High Zeta Potentials,” J.Colloid Interface Sci., 253,
    285-294, 2002.

    [14] J. Yang, and D. Y. Kwok, “Effect of Liquid Slip in Electrokinetic
    Parallel-Plate Microchannel Flow,” J.Colloid Interface Sci., 260, 225-233,
    2003.

    [15] T. Osuga, “Comparison of Growth of Laminar Flows in
    Capillary-Poiseuille, Electroosmotic Flow and Electroosmotic Circulation,”
    Jpn. J. App. Phy., 38, 6564-6567, 1999.

    [16] N. A. Patankar, and H.H. Hu, “Numerical Simulation of Electroosmotic
    Flow,” Anal. Chem, 70, 1870-1881, 1998.

    [17] S. C. Ermakov, S. C. Jacoson, and J.M. Ramsey, “Coumpter Simulations
    of Electrokinetic Transport in Microfabricated Channel Structures,”
    Anal.Chem.,70, 4494-4504, 1998.

    [18] J.Y. Lin, L. M. Fu, and R.J. Yang, “Numerical Simulation of
    Electrokinetic Focusing in Microfluidic Chips,” J. Micromech. Microeng., 12,
    1-7, 2002.

    [19] L.M. Fu, R.J. Yang, G.B. Lee, and Y.J. Pan, “Multiple Injection
    Techniques for Microfluidic Sample Handling,” Electrophoresis, 17,
    3026-3032, 2003.

    [20] D. Sinton, L. Ren, and D. Li, “A Dynamic Loading Method for
    Controlling On-Chip Microfluidic Sample Injection,” J.Colloid Interface Sci.,
    266, 448-456,2003.

    [21] A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Quantitative
    Analysis of Molecular Interaction in a Microfluidic Channel : The T-Sensor,”
    Anal. Chem., 71, 5340-5347, 1999.

    [22] M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen, “Electrokinetic
    Instability Micromixing,” Anal. Chem., 73, 5822-5832, 2001.

    [23] A. Ajdara, “Electro-Osmosis on Inhomogenously Charged Surfaces,”
    Phy. Rev. Lett., 75, 755-758, 1995.

    [24] A. Ajdara, “Generation of Transverse Fluid Currents and Forces by an
    Eelectric Field: Electro-Osmosis on Charge-Modulated and Undulated
    Surfaces,” Phy.Rev. E, 53, 4996-5005, 1996.

    [25] A. E. Herr, J.I. Molho, J.G. Santiago, M.G. Mungal, and T.W. Kenny,
    “Electroosmotic Capillary Flow with Nonuniform Zeta Potential,” Anal.
    Chem., 72, 1053-1057, 2000.

    [26] D. Erickson, and D. Li, “Microchannel Flow with Patchwise and
    Periodic Surface Heterogeneity,” Langmuir, 18, 8949-8959, 2002.

    [27] C.C. Chang, and R.J. Yang, “Computational Analysis of
    Electrokinetically Driven Flow Mixing in Microchannels with Patterned
    Blocks,” J. Micromech. Microeng., 14, 550-558, 2004.

    [28] T. B. Jones, J. D. Fowler, Y. S. Chang, C. J. Kim, “Frequencybased
    Relationship of Electrowetting and Dielectrophoretic Liquid Microactuation,”
    Langmuir, 19, 7646-7651, 2003.

    [29] T. B. Jones, K. L. Wang, and D. J. Yao, “Frequency-Dependent
    Electromechanics of Aqueous Liquids: Electrowetting and
    Dielectrophoresis,” Langmuir, 20, 2813-2818, 2004.

    [30] P. Attard, D. Antelmi, and I. Larson, “Comparsion of the Zeta Potential
    with the Diffuse Layer Potential from Charge Titration,” Langmuir, 16,
    1542-1552, 2000.

    [31] A.V. Theemsche, J. Deconinck, B. V. Bossche, and L. Bortels,
    “Numerical Solution of a Multi-Ion One-Potential Model for Electroosmotic
    Flow in Two-Dimensional Rectangular Microchannels,” Anal. Chem., 74,
    4919-4926, 2002.

    [32] G. Gouy, “Constitution of the Electric Charge at the Surface of an
    Electrolyte,” J. Phys. Chem., 9, 457-468, 1910.

    [33] D.L. Chapman, “A Contribution to the Theory of Electrocapillarity,”
    Philos. Mag., 6, 475-481, 1913.

    [34] C. Yang, D. Li, and J.H. Masliyah, “Modeling Forced Liquid Convection
    in Rectangular Microchannels with Electrokinetic Flow,” Int. J. Heat and
    Mass Transfer, 41, 4229-4249, 1998.

    [35] K .A. Hoffmann, and S. T. Chiang, “Computational Fluid Dynamics for
    Engineer-Volume 1,” Wichita, Kansas, USA, 1993.

    [36] R. J. Yang, L. M. Fu, and C. C. Hwang, “Electroosmotic Entry Flow in a
    Microchannel,” J. Colloid Interface Sci., 244, 173-179, 2001.

    [37] X Y. Chen, K.C. Toh, J.C. Chai, and C. Yang, “Developing
    Pressure-Driven Liquid Flow in Microchannels under the Electrokinetic
    Effect,” Int. J. Eng. Sci, 42, 609-622, 2004.

    [38] R. M. Sadri, and J. M. Floryan, “Entry Flow in a Channel,” Computers
    & Fluids, 31, 133-157, 2002.

    [39] H. Kinoshita, M. Oshima, J-W. Hong, T. Fujii, T. Saga, and
    T. Kobayashi, "Micro PIV Measurement of Electroosmotic Flow",
    Proceedings of the MicroTAS2002 Symposium , 1, 374-376, 2002.
    (Nov. 3-7, Nara, Japan, 2002)

    [40] D. Sinton, and D. Li, “Electroosmotic Velocity Profiles in
    Microchannels,” Colloids and Surface A : Physicochem. Eng., 222, 273-283,
    2003.

    [41] L. M. Fu, R. J. Yang, and G. B. Lee, “Analysis of Geometry Effects on
    Band Spreading of Microchip Electrophoresis,” 23, 602-612, 2003.

    [42] S. C. Jacobson, and R. Hergenröden, L. B. Koutny, R. J. Warmack, and
    J. Mlchael Ramsey, “Effects of Injection Schemes and Column Geometry on
    the Performance of Microchip Electrophoresis Devices,” Anal. Chem., 66,
    1107-1118, 1994.

    [43] D. Nicolae, P. L. Paul, E. Miko, “Heat Transfer in a MEMs for
    Microfluidics,” Sensors and Actuators, A 105, 137-149, 2003.

    [44] D. Maynes,B. W. Webb, “Fully Developed Electro-osmotic Heat Transfer
    in Microchannels,” Int. J. Heat Mass Transfer, 46, 1359-1369, 2003.

    [45] D. Erickson, D. Sinton, and D. Li, “Joule Heating and Heat Transfer
    in Poly (dimethylisiloxane) Microfliudic Systems,” Lab Chip, 3, 141-149,
    2003.

    [46] G. Y. Tang, C. Yang, J. C. Chai, and H.Q. Gong, “Joule Heating Effect on
    Electroosmotic Flow and Mass Species Transport in a Microcapillary,” Int. J.
    Heat Mass Transfer, 47, 215-227, 2004.

    下載圖示 校內:立即公開
    校外:2004-06-08公開
    QR CODE