| 研究生: |
許名勛 Hsu, Ming-Hsun |
|---|---|
| 論文名稱: |
四管於封閉空腔內之三維自然對流的熱傳特性研究 Study on 3D Natural Convection Heat Transfer Characteristics of Four Tubes in a Closed Cavity |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 自然對流 、逆算法 、CFD模擬 、加熱管 |
| 外文關鍵詞: | CFD, Inverse method, Natural convection, Tubed heat exchanger |
| 相關次數: | 點閱:145 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以實驗溫度及逆算法搭配CFD軟體得出在四加熱管於空腔中,於自然對流時的熱傳及流場特性,及其管間距 d 與排列角度 θ 對上述特性之影響。流場經管式熱交換器時會產生複雜流動,為了有效了解不透明之空腔內流動模型,使用實驗量測溫度結合逆算法及CFD商用軟體進行熱傳現象之數值模擬,求得溫度場、流場及發熱量Q與實驗數據比較,探討不同紊流模型及網格劃分之適用及可信度。結果顯示於模擬中選用RNG k-ε紊流模型輔以增強型壁面處理較為符合實驗結果與趨勢;隨著間距增大會使空腔之最高溫下降,且管與管之間牽引作用降低,而不同管間距及排列角度會導致管式加熱器聚熱現象有明顯的差異此外,善用模擬軟體之後處理將溫度場與速度場可視化,能讓我們更便利、準確地分析空腔內之熱傳現象。
This study compares three-dimensional(3D) computational fluid dynamics (CFD) numerical simulation along with inverse method to experimental temperature data. In order to investigate the natural convection heat transfer and flow characteristics of four tubed heat exchangers in a closed cavity. The effect of two parameters including tube spacing and rotation angle of arrangement is examined. The 3D CFD inverse method are applied to predict the heat transfer characteristics. Temperature obtained by CFD at all points are in good agreement with the experimental results, then the temperature contour, streamline and heat transfer characteristics are determined. For the purpose of obtaining more accurate and reliable numerical results, the selection of flow models and mesh system must match temperature data. It is found that enhanced RNG k-ε turbulence model will be an appropriate flow model for all set of experiment. Comparison between 2D and 3D contours shows that under a 3D application, previous 2D studies may not be suitable. With the increase of tube spacing, heat dissipation will slow down the air velocity. When considering the rotation angle of arrangement, the traction effect induces the heat flow direction. To optimize the performance based on various uses, both parameters should be considered together.
[1] C. Shu, Y. D. Zhu, Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder, Int. J. Numer. Meth. Fluids, vol. 38, pp. 429-445, 2002
[2] D. Angeli, P. Levoni, G. Barozzi, Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder, Int. J. Heat Mass Transfer , vol. 51, pp. 553–565, 2008.
[3] H.S. Yoon, M.Y. Ha, B.S. Kim, D.H. Yu, Effect of the position of a circular cylinder in a square enclosure on natural convection at Rayleigh number of 107, Phys. Fluids 21, 047101, 2009.
[4] O. Reymond, D.B. Murray, T.S. O’Donovan, Natural convection heat transfer from two horizontal cylinders, Exp. Therm. Fluid Sci. vol. 32 issue 8, pp. 1702–1709, 2008.
[5] S. Narayan, A.K. Singh, A. Srivastava, Interferometric study of natural convection heat transfer phenomena around array of heated cylinders, Int. J. Heat Mass Transfer, vol. 109, pp.278-292,2017.
[6] G.S. Mun, Y.G. Park, H.S. Yoon, M. Kim, M.Y. Ha, Natural convection in a cold enclosure with four hot inner cylinders based on diamond arrays (Part-I: effect of horizontal and vertical equal distance of inner cylinders), Int. J. Heat Mass Transfer, vol. 111, pp. 755–770, 2017.
[7] M.N. Özisik, Heat Conduction, 2nd ed., Wiley, Chapter 14, 1993.
[8] K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, 1995.
[9] J.H Lin, C.K. Chen, Y.T. Yang, The inverse estimation of the thermal boundary behavior of a heated cylinder normal to a laminar air stream, Int. J. Heat Mass Transfer, vol.43, pp.3991-4001, 2000.
[10] H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tubeplate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol.48, pp.2697-2707, 2005.
[11] H.T .Chen, J.C. Chou, Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol 49, pp.3034-3044, 2006.
[12] M.S. Mon, U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, Int. J. Heat Mass Transfer, vol. 47, pp. 1953-1964, 2004.
[13] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer, vol.109, pp.378-392, 2017
[14] H.T. Chen, Y.L. Hsieh, Y.F. Lin, K.C. Liu, Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data, Vol.127, pp. 541-554, 2018.
[15] H.T. Chen, H.Y. Chou, H.C. Tseng, J.R. Chang, Numerical study on natural convection heat transfer of annular finned tube heat exchanger in chimney with experimental data, vol. 127, pp. 483-496,2018.
[16] H.T. Chen Y.L. Chang, P.Y. Lin, Y.J. Chiu, J.R. Chang, Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters, vol. 118, pp.931-947, 2018.
[17] H.T. Chen, W.X. Ma, P.Y. Line, Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: Experimental and numerical study, vol.147, 118948, 2020.
[18] H.T. Chen, Y.S. Lin, P.C. Chen, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, vol. 100, pp.320-331, 2016.
[19] ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, 2013.
[20] L. Prandtl, Uber die ausgebildete Turbulenz, ZAMM, vol 5, pp.136- 139, 1925.
[21] Q. Chen, W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings, vol. 28, pp. 137-144, 1998.
[22] B.E. Launder, D.B. Spalding, Mathematical Method of Turbulence, Academic, London, pp. 3-51, 1972
[23] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence, Journal of Scientific Computing, vol.1, pp. 3-51, 1986
[24] T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ε eddy viscosity model for high Reynolds number turbulent flows - Model Development and Validation, Computers Fluids, vol. 24(3), pp. 227-238, 1995.
[25] B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics Eng., vol. 3, pp. 269-289, 1974.
[26] 賴健榮,四圓管板鰭管式熱交換器之熱傳特性研究,國立成功大學機械工程學系,碩士論文,2011。
[27] 呂致翰,流動模式對交錯排列之板鰭圓管熱交換器的熱傳效能影響,國立成功大學機械工程學系,碩士論文,2013。