簡易檢索 / 詳目顯示

研究生: 譚開豪
Tan, Kai-Hau
論文名稱: 運用嚴格耦合波理論尋找最佳化熱光電放射器
Optimization on Emitter of Thermophotovoltaic Systems with the Rigorous Coupled-Wave Analysis
指導教授: 陳玉彬
Chen, Yu-bin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 熱光電放射器田口方法週期奈米結構嚴格耦合波理論
外文關鍵詞: Taguchi Methods, Thermophotovoltaic emitter, Rigorous Coupled-Wave Analysis(RCWA), Grating
相關次數: 點閱:139下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以尋找適合週期奈米結構做為熱光電放射器,使其在 波段之間具有高放射率且在 的波段有低放射率來優化熱光電系統的發電效率。研究方法以自行撰寫之程式(基於嚴格耦合波理論)模擬二維週期奈米結構之放射率,並且與其他已發表之文獻中類似的研究對照,證實程式可以重現他人的結果。運用嚴格耦合波理論搭配田口方法做系統性的參數探索,找出一組熱光電放射器的幾何形狀(x¬= 400 nm、y= 400 nm、fx= 0.8、fy= 0.8、d= 200 nm、凸結構),由模擬不同入射及極化方向之放射率頻譜得知此結構比已知的凹結構更為適合做為熱光電放射器。

    n this study, a promising method to enhance the efficiency is to employ nanoscale surface periodic structures (gratings) as a wavelength-selective Thermophotovoltaic (TPV) emitter tailoring radiation spectrum. We require that its emissivity is close to 1 when incident wavelength is between and close to 0 when incident wavelength is at . This work is going to numerically develop optimized two-dimensional nanoscale gratings as TPV emitters. Their fitting radiative properties will be demonstrated with directional-spectral emittance and acquired from programmed codes based on Rigorous Coupled-Wave Analysis (RCWA) and be compared with other’s to prove our numerical method to work on 2D gratings. We use the Taguchi Methods to optimize the emitter with RCWA, and find out a better structure for emitters(x¬= 400 nm、y= 400 nm、fx= 0.8、fy= 0.8、d= 200 nm、protruding structure). The emissivity spectrum of various incident angle and polarization can be simulated to show that this specific structure is referred to as a better emitter than that currently being used.

    摘要 ...................................................................................................................II abstract ............................................................................................................. III 目錄 ................................................................................................................. IV 圖目錄 ........................................................................................................... VII 表目錄 .............................................................................................................. X 符號表 ............................................................................................................. XI 一、緒論 1 1. 研究動機 1 2. 研究目標 2 3. 熱光電系統 3 (1) 發展背景 3 (2) 原理 4 (3) 熱源 6 (4) 熱光電放射器與過濾器 7 (5) 熱光電單元 8 4. 週期奈米結構 9 (1) 結構 9 (2) 表面電漿(surface plasmon) 10 (3) 材料 15 二、嚴格耦合波理論 17 1. 背景介紹 17 2. 方程式推導 19 三、收斂驗證和最佳化方法介紹 43 1. 收斂驗證 43 (1) 收斂性 43 (2) 模擬一維週期奈米結構來做驗證 45 (3) 模擬二維週期奈米結構來做驗證 48 2. 最佳化設計 49 (1) 田口方法簡介 50 (2) 水準表和實驗直交表 50 (3) 因子反應表 51 四、最佳化熱光電放射器設計 54 1. 熱光電放射器 54 2. 以田口方法做最佳化 55 (1) 品質特性和理想機能 55 (2) 控制變因 55 (3) 控制變因水準表和實驗直交表 57 (4) 因子反應表 60 (5) 最佳化結果 65 3. 以修正的控制變因水準表以及品質特性再做一次田口方法 66 (1) 新品質特性 66 (2) 新控制變因水準表 66 (3) 實驗直交表 67 (4) 因子反應表 68 (5) 最佳化結果 70 五、不同入射角度及極化方向之放射率頻譜及極座標 74 1. 以不同入射角度及極化方向做放射率頻譜 74 2. 以不同的入射角度做放射率極座標 76 六、結論與未來工作 83 1. 結論 83 2. 未來工作 83 參考文獻 84

    Basu, S., Chen, Y.-B., and Zhang, Z. M., 2007, ”Microscale Radiation in Thermophotovoltaic Devices – A Review,” International Journal of Energy Research, 31, pp. 689-716.
    Benner, J. P., Coutts, T. J., and Ginley, D. S., 1996, The Second NREL Conference on Thermophotovoltaic Generation of Electricity, Colorado Springs, CO, July 1995, AIP: NY.
    Bitnar, B., 2003, “Silicon, Germanium Silicon/Germanium Photocells for Thermophotovoltaics Applications.,” Semiconductor Science and Technology, 18, pp. S221-S227.
    Chen, Y.-B. and Zhang, Z. M., 2007, ”Design of Tungsten Complex Gratings for Thermophotovoltaic Radiators,” Optics Communication, 264, pp. 411-417
    Chubb, D. L. and Wolford, D. S., 2005, “Dual Layer Selective Emitter,” Applied Physics Letters, 87, pp. 141907.
    Colangelo, G., de Risi, A., and Laforgia, D., 2006, “Experimental Study of a Burner with High Temperature Heat Recovery System for TPV Applications,” Energy Conversion and Management., 47, pp. 1192-1206.
    Coutts, T. J. and Benner, J. P., 1995, The First NREL Conference on Thermophotovoltaic Generation of Electricity, Copper Mountain, CO, 1994, AIP: NY.
    Coutts, T. J., Benner, J. P., and Allman, C. S., 1999, presented at Thermophotovoltaic Generation of Electricity: Forth NREL Conference, Denver, CO.
    Coutts, T. J. and Ward, J. S., 1999, “Thermophotovoltaic and Photovoltaic Conversion at High-Flux Densities,” IEEE Transactions On Electron Devices, 46, pp. 2145-2153.
    Coutts, T. J., Guazzoni, G., and Luther, J., 2003, “An Overview of the Fifth Conference on Thermophotovoltaic Generation of Electricity,” Semiconductor Science and Technology, 18, pp. S144-S150.
    Crowley, C. J., Elkouh, N. A., S., M., and Chubb, D. L., 2005, “Thermophotovoltaic Converter Performance for Radioisotope Power Systems.,” Space Technology and Applications International Forum-STAIF 2005, Albuquerque, NM.
    Heinzel, A., Boerner, V., Gombert, A., Blasi, B., Wittwer, V., and Luther, J., 2000, ”Radiation Filters and Emitters for the NIR Based on Periodically Structured Metal Surfaces,” Journal of Modern Optics, 47, pp. 2399-2419
    Kanamori, Y., Shimono, M., and Hane, K., 2006, ” Fabrication of Transmission Color Filters Using Silicon Subwavelength Gratings on Quartz Substrates,” IEEE photonics technology letters, 18, pp. 2126-2128.
    Lalanne, P. and Morris, G. M., 1996, “Highly Improved Convergence of the Coupled-Wave Method for TM Polarization,” Journal of the Optical Society of America A-Optics Image Science, 13, pp. 779-784.
    Lalanne, P., 1997, ”Improved Formulation of the Coupled-Wave Method for Two-Dimensional Gratings,” Journal of the Optical Society of America A-Optics Image Science, 14, pp. 1592-1598.
    Li, L. F., 1996, ”Use of Fourier Series in the Analysis of Discontinuous Periodic Structures,” Journal of the Optical Society of America A-Optics Image Science, 13, pp. 1870-1876.
    Licciulli, A., Diso, D., Torsello, G., Tundo, S., Maffezzoli, A., Lomascolo, M., and Mazzer, M., 2003, “The Challenge of High performance Selective Emitters for Thermophotovoltaic Applications,” Semiconductor Science and Technology, 18, pp. S174–S183.
    Mauk, M. G. and Andreev, V. M., 2003, ” GaSb-Related Materials for TPV Cells,” Semiconductor Science and Technology, 18, pp. S191-S201.
    Moharam, M. G., 1988, ”Couple-Wave Analysis of Two-Dimensional Dielectric Gratings,” Holographic Optics: Design and Applications, 883, pp. 8-11.
    Moharam, M. G., Grann, E. B., Pommet, D. A., and Gaylord, T. K., 1995, “Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings,” Journal of the Optical Society of America A-Optics Image Science, 12, pp. 1068-1076.
    Nagpal, P., Han, S. E., Stein, A., and Norris, D. J., 2008, ”Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Letter, pp. 3238-3243.
    Narayanaswamy, A. and Chen, G., 2004, ”Thermal Emission Control with One-Dimensional Metallodielectric Photonic Crystals,” Physical Review B, 70, pp. 125101.
    Nelson, R. E., 2003, “A Brief History of Thermophotovoltaic Development,” Semiconductor Science and Technology, 18, pp. S141-S143.
    Sai, H., Yugami, H., Kanamori, Y., and Hane, K., 2003, “Spectrally Selective Thermal Radiators and Absorbers with Periodic Microstructured Surface for High-Temperature Applications,” Microscale Thermophysical Engineering, 7, pp. 101-115.
    Seager, C. H., Sinclair, M. B., and Fleming, J. G., 2005, “Accurate Measurements of Thermal Radiation from Tungsten Photonic Lattice,” Applied Physics Letters, 86, pp. 244105.
    Taguchi, G., Yokoyama, Y., and Wu, Y., 1993, Taguchi Methods: Design of Experiments, American Supplier Institute, America.
    Taflove, A. and Hagness, S. C., 2000, ”Computational Electrodynamics-The Finite-Difference Time Domain Method,” 2nd ed, Artech House.
    Torsello, G., Lomascolo M., Licciulli A., Diso D., Tundo S., and Mazzer M., 2004, “The Origin of Highly Efficient Selective Emission in Rare-Earth Oxides for Thermophotovoltaic Applications,” Nature Materials, 3, pp .632-637.
    Teofilo, V. L., Choong, P., Chen, W., Chang, J., and Tseng, Y.-L., 2006, “Thermophotovoltaic Energy Conversion for Space Applications,” Space Technology and Applications International Forum-STAIF. Albuquerque, NM, 2006, pp. 552-559.
    Vincent, P., 1978, “A Finite Difference Method for Dielectric and Conducting Cross Gratings,” Optics Communication, 26, pp. 293-296.
    Wedlock, B. D., 1963, ”Thermo-Photo-Voltaic Energy Conversion,” Proceedings of the IEEE , 51, pp. 694–698.
    Wu, T. K., 1997, “Infrared Filters for High-Efficiency Thermovoltaic Devices,” Microwave and Optical Technology Letters, 15, pp. 9-12.
    Yang, W. M., Chou, S. K., Shu, C., Li, Z. W., and Xue, H., 2002, “Development of Microthermophotovoltaic System,” Applied Physics Letters, 81, pp. 5255-5257.
    Yugami, H., Sasa, H., and Yamaguchi, M., 2003, “Thermophotovoltaic Systems for Civilian and Industrial Applications in Japan,” Semiconductor Science and Technology, 18, pp. S239-S246.
    Zhang, Z. M., 2007, Nano/Microscale Heat Transfer, The McGraw-Hill Companies, America.

    下載圖示 校內:2012-09-30公開
    校外:2012-09-30公開
    QR CODE