簡易檢索 / 詳目顯示

研究生: 葉穎逸
Yeh, Ying-Yi
論文名稱: CD44在人類牙髓細胞礦化過程中的分子機制
The molecular mechanisms of CD44 in the mineralization of human dental pulp cells
指導教授: 袁國
Yuan, Kuo
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: CD44透明質酸礦物沉積牙齒發育
外文關鍵詞: CD44, hyaluronic acid, odontogenesis, mineralization
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞表面的接受器CD44在牙齒的發育中扮演重要的角色。然而,CD44對於牙髓細胞的礦化作用,目前仍然不明朗。CD44的主要配體—透明質酸(HA),在細胞分化扮演主導的作用。我們假設添加高分子量的透明質酸會誘導成牙本質細胞分化。使用不同劑量的透明質酸處理牙髓細胞,在3~14天後評估對鹼性磷酸酶活性的影響。透明質酸對牙髓細胞的礦物質沉積能力,則利用基質礦化小體染色檢驗。為了確認與牙齒礦化相關的基因,我們培養三天以後比較正常培養與添加玻尿酸的組別,並且利用PCR array的方式找出礦物質化相關的基因。之後弱化(knockdown) CD44,以相同方式培養,利用及時定量聚合酶連鎖反應、西方點墨法以及免疫組織染色法以研究牙髓細胞中COL15A1,BMP7和ALPL mRNA和蛋白質的表現,驗證PCR array的實驗結果。

    實驗結果顯示在培養液當中添加透明質酸(1500~1800 kDa)測試鹼性磷酸酶的活性,在第3天的時間點,相較其他組別增加。PCR array的實驗結果可以看到添加高分子量透明質酸的組別相較於控制組有顯著的增加,成骨相關的基因,例如:COL15A1, IBSP, BMP7 以及ALPL,有高度表現。利用免疫組織化學染色法檢驗CD44, COL15A1, BMP7 以及ALPL是否表現於造牙本質細胞層。
    我們的結果分析指出高分子量的透明質酸可以做為一個良好的材料,在早期的培養刺激牙髓細胞礦物質化。我們推測透明質酸所介導CD44的礦物質化,ALPL以及BMP7可能參與其中。

    CD44 has been suggested to play an important role during tooth development. However, little emphasis has been placed on whether the CD44 can influence mineralization of dental pulp cells. One major ligand for CD44 is hyaluronan (HA), which plays an important role in cell differentiation. We hypothesized that HA with high molecular weight at optimal concentration may induce odontoblastic differentiation. We added different doses for high molecular weight of HA to the medium at the first plating of cells. After 3 to 14 days in culture, cell differentiation was evaluated by alkaline phosphatase activity. The effects of HA on mineral deposition were examined using Alizarin red staining. To identify the genes that are involved in dental mineralization, we compared the expression of normal α-MEM and α-MEM with additive HA (2 mg/ml) in 3 days by osteogenesis PCR array. Then, PCR array was used to identify the upregulated osteogenesis-associated genes. The CD44 knockdown cells and control cells were cultured in α-MEM with additive HA (2 mg/ml) for 3 days. Q-PCR, immunoblotting, and immunohistochemistry analysis were used to investigate the mRNA and protein expression profiles of COL15A1, BMP7 and ALPL in the dental pulp cells to confirm PCR array results.
    The results showed that treatment with high molecular weight (1500~1800 kDa) HA in early cultures (days3) increased alkaline phosphatase activity. On the other hand, high molecular weight HA in basal medium, significantly increased mineralization in the dental pulp cells cultures. The data of osteogenesis PCR array and Q-PCR identifed several up-regulated osteogenesis-associated genes, including COL15A1, IBSP, BMP7 and ALPL. IHC staining with CD44, BMP7, ALPL and COL15A1 was applied to check if all markers had expressed on the odontoblast layer.
    Our analysis indicated that high molecular-weight HA maybe a good material to stimulate dental mineralization in early cultures. We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate dental mineralization, with involvement of ALPL and BMP7.

    頁次 中文摘要.............................................I Abstract..........................................III 誌謝................................................IV 目錄.................................................1 英文縮寫檢索表.........................................4 第一章 緒論............................................5 一、 牙齒發育概論...................................5 1. 牙齒的生成與發育................................5 2. 牙齒的礦化.....................................6 二、 CD44 (cluster of differentiation 44)概論......7 1. CD44簡介......................................8 2. CD44與礦物質化相關的配體(ligand).................9 三、 透明質酸(Hyaluronan;HA)簡介...................10 四、 CD44與透明質酸在牙齒發育扮演的角色................12 五、 研究目的......................................14 第二章 實驗材料與方法...................................15 I. 材料.........................................15 1. 人類初級培養細胞來源............................15 II. 方法.........................................21 一、 初級培養人類牙髓細胞............................21 二、 細胞培養 (Cell culture).......................23 A. 繼代培養 (Subculture).........................24 B. 透明質酸(HA)前置處理............................24 C. 冷凍保存細胞 (Freezing cells)..................25 D. 解凍細胞 (Thawing cells).......................25 E. 細胞計數 (Cell counting).......................26 三、 誘導人類牙髓細胞礦物質化..........................27 四、 鹼性磷酸酶活性測試 (Alkaline phosphatase activity assay)...............................................27 五、 Alizarin red staining.........................29 六、 RNA 萃取及濃度測定..............................30 七、 反轉錄PCR (RT-PCR).............................32 八、 Human_Osteogenesis PCR array..................33 九、 及時定量聚合酶連鎖反應 (real-time PCR)............34 十、 抽取質體........................................35 十一、 洋菜膠體電泳 (Agarose gel electrophoresis).......37 十二、 慢病毒的製備 (Lentivirus production).............38 十三、 慢病毒的定量 (Lentivirus titer determination)....40 十四、 慢病毒的感染 (Lentivirus infection)..............42 十五、 細胞抗生素濃度測試................................43 十六、 細胞蛋白質萃取 (Protein extraction)..............44 十七、 蛋白質濃度測定 (Protein assay)...................45 十八、 SDS-PAGE 蛋白質電泳 (SDS-PAGE protein electrophoresis).......................................45 十九、 西方點墨法 (Western blot)........................47 二十、 免疫組織化學染色(Immunohistochemistry, IHC).......49 二十一、 影像處理.........................................52 二十二、 統計方法.........................................52 第三章 實驗結果...........................................53 一、 人類第三大臼齒牙髓組織之細胞標誌.....................53 二、 初級培養人類牙髓細胞...............................53 三、 透明質酸(HA)刺激牙髓細胞產生礦物質沉積的能力...........53 1. 鹼性磷酸酶 (Alkaline phosphatase) 的活性測試........54 2. 透明質酸(HA)對於透明質酸合成酶 (HAS)表現量的影響........55 3. Alizarin red staining 礦化小體染色觀察..............55 4. Human_Osteogenesis PCR array分析誘導後基因的表現.....56 四、 shRNA抑制CD44對牙髓細胞礦化的影響.....................56 1. 抑制CD44對礦物質化沉積的影響..........................56 2. 抑制CD44對礦物質化下游基因的影響.......................57 3. 免疫組織化學染色鑑定實驗結果...........................57 第四章 實驗討論.............................................59 第五章 結論................................................64 參考文獻...................................................65 附圖......................................................68 附錄......................................................85 附錄一....................................................85 附錄二.....................................................86 附錄三.....................................................89 自述......................................................90

    參考文獻

    Bogovic, A., Nizetic, J., Galic, N., Zeljezic, D., Micek, V., and Mladinic, M. (2011). The effects of hyaluronic acid, calcium hydroxide, and dentin adhesive on rat odontoblasts and fibroblasts. Arhiv za higijenu rada i toksikologiju 62, 155-161.

    Cao, J.J., Singleton, P.A., Majumdar, S., Boudignon, B., Burghardt, A., Kurimoto, P., Wronski, T.J., Bourguignon, L.Y., and Halloran, B.P. (2005). Hyaluronan increases RANKL expression in bone marrow stromal cells through CD44. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 20, 30-40.

    Chen, K.L., Huang, Y.Y., Lung, J., Yeh, Y.Y., and Yuan, K. (2013). CD44 Is Involved in Mineralization of Dental Pulp Cells. Journal of endodontics 39, 351-356.

    Falconi, D., and Aubin, J.E. (2007). LIF inhibits osteoblast differentiation at least in part by regulation of HAS2 and its product hyaluronan. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 22, 1289-1300.

    Felszeghy, S., Hyttinen, M., Tammi, R., Tammi, M., and Modis, L. (2000). Quantitative image analysis of hyaluronan expression in human tooth germs. European journal of oral sciences 108, 320-326.

    Felszeghy, S., Modis, L., Tammi, M., and Tammi, R. (2001). The distribution pattern of the hyaluronan receptor CD44 during human tooth development. Archives of oral biology 46, 939-945.

    Goldberg, M., Septier, D., Lecolle, S., Chardin, H., Quintana, M.A., Acevedo, A.C., Gafni, G., Dillouya, D., Vermelin, L., Thonemann, B., et al. (1995). Dental mineralization. The International journal of developmental biology 39, 93-110.

    Golub, E.E. (2011). Biomineralization and matrix vesicles in biology and pathology. Seminars in immunopathology 33, 409-417.

    Helder, M.N., Karg, H., Bervoets, T.J., Vukicevic, S., Burger, E.H., D'Souza, R.N., Woltgens, J.H., Karsenty, G., and Bronckers, A.L. (1998). Bone morphogenetic protein-7 (osteogenic protein-1, OP-1) and tooth development. Journal of dental research 77, 545-554.

    Hertweck, M.K., Erdfelder, F., and Kreuzer, K.A. (2011). CD44 in hematological neoplasias. Annals of hematology 90, 493-508.

    Huang, L., Cheng, Y.Y., Koo, P.L., Lee, K.M., Qin, L., Cheng, J.C., and Kumta, S.M. (2003). The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. Journal of biomedical materials research Part A 66, 880-884.

    Inuyama, Y., Kitamura, C., Nishihara, T., Morotomi, T., Nagayoshi, M., Tabata, Y., Matsuo, K., Chen, K.K., and Terashita, M. (2010). Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. Journal of biomedical materials research Part B, Applied biomaterials 92, 120-128.

    Kim, J., Kim, I.S., Cho, T.H., Lee, K.B., Hwang, S.J., Tae, G., Noh, I., Lee, S.H., Park, Y., and Sun, K. (2007). Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28, 1830-1837.

    Leonardi, R., Loreto, C., Caltabiano, R., and Caltabiano, C. (2006). Immunolocalization of CD44s in human teeth. Acta histochemica 108, 425-429.

    Lin, Z.M., Qin, W., Zhang, N.H., Xiao, L., and Ling, J.Q. (2007). Adenovirus-mediated recombinant human bone morphogenetic protein-7 expression promotes differentiation of human dental pulp cells. Journal of endodontics 33, 930-935.

    Matthiessen, M.E., Garbarsch, C., Engelbrecht Olsen, B., Hellstrom, S., and Engstrom-Laurent, A. (1997). Hyaluronan in human deciduous tooth germs in the bell stage. Histochemistry and immunohistochemistry. Acta anatomica 159, 1-7.

    McKee, M.D., Zalzal, S., and Nanci, A. (1996). Extracellular matrix in tooth cementum and mantle dentin: localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. The Anatomical record 245, 293-312.

    Sasaki, T., and Kawamata-Kido, H. (1995). Providing an environment for reparative dentine induction in amputated rat molar pulp by high molecular-weight hyaluronic acid. Archives of oral biology 40, 209-219.

    Shimabukuro, Y., Ueda, M., Ichikawa, T., Terashi, Y., Yamada, S., Kusumoto, Y., Takedachi, M., Terakura, M., Kohya, A., Hashikawa, T., et al. (2005).

    Fibroblast growth factor-2 stimulates hyaluronan production by human dental pulp cells. Journal of endodontics 31, 805-808.

    Simon, S., Smith, A.J., Lumley, P.J., Cooper, P.R., and Berdal, A. (2012). The pulp healing process: from generation to regeneration. Endodontic Topics 26, 41-56.

    Solis, M.A., Chen, Y.H., Wong, T.Y., Bittencourt, V.Z., Lin, Y.C., and Huang, L.L. (2012). Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochemistry research international 2012, 346972.

    Thesleff, I. (2003). Epithelial-mesenchymal signalling regulating tooth morphogenesis. Journal of cell science 116, 1647-1648.

    Yamada, K., Yamada, T., Sasaki, T., Rahemtulla, F., and Takagi, M. (1997). Light and electron microscopical immunohistochemical localization of large proteoglycans in human tooth germs at the bell stage. The Histochemical journal 29, 167-175.

    下載圖示 校內:2016-08-21公開
    校外:2016-08-21公開
    QR CODE