簡易檢索 / 詳目顯示

研究生: 林彥辰
Lin, Yen-Chen
論文名稱: 微波電漿輔助化學氣相沉積單晶鑽石的研究
Microwave Plasma Assisted Chemical Vapor Deposition of Single Crystal Diamond
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 微波電漿輔助化學氣相沉積法單晶鑽石pocket holder
外文關鍵詞: microwave plasma assisted chemical vapor deposition, single crystal diamond, pocket holder
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於鑽石具有許多優異的物理及化學特性,舉凡其高硬度、低摩擦係數的機械性質;高熱傳導率、低熱膨脹的熱學性質;不與酸鹼反應的化學惰性等,使得其應用範圍十分廣泛,具有極高的應用潛力。而目前,以化學氣相沉積法成長大面積單晶鑽石遇到的主要問題包括 : 成長過後的單晶鑽石面積縮小、成長速率過慢、高缺陷密度等。本篇論文的主要目標,便是找出可能的解決方法去增大單晶鑽石的表面,並同時提升其成長速率及品質。
    本篇論文以微波電漿輔助化學氣相沉積法,調整出適宜且穩定的參數,在功率6700 W,壓力120 mbar的條件下成長單晶鑽石,為了解決成長時周圍環繞多晶鑽石而導致單晶鑽石面積縮小,本實驗設計了「pocket holder」載台來承載單晶鑽石基板,成功避免在其周圍產生多晶鑽石環。藉由此方法,單晶鑽石的成長速率約為10 - 25 μm/h ,成長時間約為8 - 64小時。
    此外,本實驗亦通入了二氧化碳氣體,透過分解二氧化碳使得氣氛中含有氧原子的成分,目的欲使鑽石表面透明化,再藉由拉曼光譜儀、光學顯微鏡,原子力顯微鏡等儀器來確認成長之單晶鑽石品質。

    Diamond has many excellent physical and chemical properties such as high hardness, low coefficient of friction, high thermal conductivity, low coefficient of thermal expansion, and chemical inertness making it not reactive with acids at room temperature. Diamond’s applications are therefore very broad. At present, the main problems would be economic and rapid growth of high quality large-area single- crystal diamond by chemical vapor deposition. The main purpose of this thesis is to figure out possible solutions to increase the surface area of single crystal diamond, and increasing the growth rate and quality at the same time.
    In this thesis, microwave plasma enhanced chemical vapor deposition in CH4 and H2 is used to grow single crystalline diamond by the stable and proper experimental parameters at the microwave power of 6700 W and a gas pressure of 120 mbar. In order to avoid the growth of polycrystalline diamond rims surrounding single crystal diamond during the diamond growth, “pocket holder” was designed to carry single crystalline diamond substrates. It succeeded to avoid the formation of polycrystalline diamond rims around single crystal diamond. By this method, the growth rate of single crystalline diamond was about 10 - 25 μm/hr when the growing time was about 8 - 64 hours.
    In addition, carbon dioxide gas was used to produce oxygen atoms (ions) in this study. The purpose is to reduce graphitic carbon and defects and the diamond transparent. The quality of diamond growth was characterized by Raman spectroscopy, optical microscopy, atomic force microscopy, etc.

    摘要 I Abstract II 致謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 鑽石簡介 4 1.2.1 鑽石的特性及應用 5 1.2.2 天然鑽石及人造鑽石 7 1.2.3 鑽石的分類 8 第二章 文獻回顧 10 2.1 化學氣相沉積(CVD)原理 10 2.2 CVD成長鑽石的種類 11 2.2.1 熱燈絲化學氣相沉積系統(HFCVD) 12 2.2.2 化學誘導放熱燃燒法(Chemical induced exothermic combustion) 13 2.2.3 直流電漿化學氣相沉積系統(DCCVD) 14 2.2.4 微波電漿輔助化學氣相沉積系統(MPECVD) 15 2.3 製程參數對成長單晶鑽石的影響 16 2.3.1 氫氣 (H2) 16 2.3.2 甲烷 (CH4) 18 2.3.3 二氧化碳 (CO2) 19 2.3.4 溫度 20 2.3.5 壓力 21 2.4 MPACVD合成大面積單晶鑽石 22 2.4.1 MPACVD外延沉積單晶鑽石 22 2.4.2 側邊成長單晶鑽石 24 2.4.3 掀離製程(lift off process)製備單晶鑽石 24 2.2.4 馬賽克晶圓法(Mosaic wafer)製備單晶鑽石 26 第三章 實驗流程及儀器介紹 30 3.1 實驗流程圖 30 3.2 實驗前置作業 31 3.2.1基板的前置處理 31 3.2.2 pocket holder載台設計 32 3.3 製程機台 36 3.4 製程過程監控設備 38 3.4.1 雙波長光學溫度計 38 3.4.2 分光光譜儀 39 3.5 量測分析設備 41 3.5.1 光學顯微鏡 41 3.5.2 拉曼光譜儀 43 3.5.3 原子力顯微鏡 46 3.5.4 掃描式電子顯微鏡 48 第四章 結果與討論 50 4.1 拋光單晶鑽石 50 4.2 成長單晶鑽石製程參數之優化 53 4.2.1 第一次SCD成長 53 4.2.2 第二次SCD成長 60 4.2.3 第三次SCD成長 66 4.3 長時間的SCD成長 70 4.4 通入CO2對成長SCD的影響 76 第五章 結論與未來展望 79 第六章 參考文獻 80

    [1] http://www.chemicool.com/elements/carbon.html.
    [2] J. C. Angus, "Diamond and diamond-like films," Thin Solid Films, vol. 216, no. 1, pp. 126-133, 1992.
    [3] S.-T. Lee, Z. Lin, and X. Jiang, "CVD diamond films: nucleation and growth," Materials Science and Engineering: R: Reports, vol. 25, no. 4, pp. 123-154, 1999.
    [4] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology. John Wiley & Sons, 1994.
    [5] Y. Gurbuz, O. Esame, I. Tekin, W. P. Kang, and J. L. Davidson, "Diamond semiconductor technology for RF device applications," Solid-state electronics, vol. 49, no. 7, pp. 1055-1070, 2005.
    [6] G. Peschel, "Carbon-carbon bonds: hybridization," vol. 5, no. 5, 2011.
    [7]http://zube.brinkster.net/SCH4U25/StructureProperty/Bonding/Reading/sch4ubondingunit.html.
    [8] T. A. Grotjohn and J. Asmussen, "Microwave plasma-assisted diamond film deposition," Diamond films handbook, pp. 243-260, 2002.
    [9] http://en.wikipedia.org/wiki/Diamond.
    [10] http://en.wikipedia.org/wiki/Young's_modulus.
    [11] M. Liu, V. I. Artyukhov, H. Lee, F. Xu, and B. I. Yakobson, "Carbyne from first principles: chain of C atoms, a nanorod or a nanorope," ACS nano, vol. 7, no. 11, pp. 10075-10082, 2013.
    [12] R. Balmer et al., "Unlocking diamond's potential as an electronic material," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 366, no. 1863, pp. 251-265, 2008.
    [13] R. Balmer et al., "Chemical vapour deposition synthetic diamond: materials, technology and applications," Journal of Physics: Condensed Matter, vol. 21, no. 36, p. 364221, 2009.
    [14] H. Yamada, A. Chayahara, Y. Mokuno, N. Tsubouchi, S.-i. Shikata, and N. Fujimori, "Developments of elemental technologies to produce inch-size single-crystal diamond wafers," Diamond and Related materials, vol. 20, no. 4, pp. 616-619, 2011.
    [15] P. W. May, "CVD diamond: a new technology for the future?," Endeavour, vol. 19, no. 3, pp. 101-106, 1995.
    [16] S. Nad, Growth and characterization of large, high quality single crystal diamond substrates via microwave plasma assisted chemical vapor deposition. Michigan State University, 2016.
    [17] J. Walker, "Optical absorption and luminescence in diamond," Reports on Progress in Physics, vol. 42, no. 10, p. 1605, 1979.
    [18] M. Regmi, Growth of single crystal diamond. 2007.
    [19] H. Pedersen and S. D. Elliott, "Studying chemical vapor deposition processes with theoretical chemistry," Theoretical Chemistry Accounts, vol. 133, no. 5, p. 1476, 2014.
    [20] M. Schwander and K. Partes, "A review of diamond synthesis by CVD processes," Diamond and related materials, vol. 20, no. 9, pp. 1287-1301, 2011.
    [21] B. Spitsyn et al., "Purification and functionalization of nanodiamond," in Synthesis, properties and applications of ultrananocrystalline diamond: Springer, 2005, pp. 241-252.
    [22] S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, "Growth of diamond particles from methane-hydrogen gas," Journal of Materials Science, vol. 17, no. 11, pp. 3106-3112, 1982.
    [23] P. W. May, "Diamond thin films: a 21st-century material," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 358, no. 1766, pp. 473-495, 2000.
    [24] D. Das and R. Singh, "A review of nucleation, growth and low temperature synthesis of diamond thin films," International Materials Reviews, vol. 52, no. 1, pp. 29-64, 2007.
    [25] M. Frenklach, "The role of hydrogen in vapor deposition of diamond," Journal of Applied Physics, vol. 65, no. 12, pp. 5142-5149, 1989.
    [26] S. Michaelson and A. Hoffman, "Hydrogen in nano-diamond films," Diamond and related materials, vol. 14, no. 3-7, pp. 470-475, 2005.
    [27] D. M. Gruen, "Nanocrystalline diamond films," Annual Review of Materials Science, vol. 29, no. 1, pp. 211-259, 1999.
    [28] V. Ralchenko et al., "Quality of diamond wafers grown by microwave plasma CVD: effects of gas flow rate," Diamond and Related Materials, vol. 8, no. 2-5, pp. 189-193, 1999.
    [29] P. A. Dennig, H. Shiomi, D. A. Stevenson, and N. M. Johnson, "Influence of substrate treatments on diamond thin film nucleation," Thin Solid Films, vol. 212, no. 1-2, pp. 63-67, 1992.
    [30] X. Li, J. Perkins, R. Collazo, R. J. Nemanich, and Z. Sitar, "Investigation of the effect of the total pressure and methane concentration on the growth rate and quality of diamond thin films grown by MPCVD," Diamond and related materials, vol. 15, no. 11-12, pp. 1784-1788, 2006.
    [31] Q. Zhang et al., "The effect of CO2 on the high-rate homoepitaxial growth of CVD single crystal diamonds," Diamond and Related Materials, vol. 20, no. 4, pp. 496-500, 2011.
    [32] K. Tsugawa, M. Ishihara, J. Kim, Y. Koga, and M. Hasegawa, "Nanocrystalline diamond film growth on plastic substrates at temperatures below 100 C from low-temperature plasma," Physical Review B, vol. 82, no. 12, p. 125460, 2010.
    [33] C. Liu, J.-H. Wang, and J. Weng, "Growth of micro-and nanocrystalline dual layer composite diamond films by microwave plasma CVD: influence of CO2 concentration on growth of nano-layer," Journal of Crystal Growth, vol. 410, pp. 30-34, 2015.
    [34] J. Stiegler, T. Lang, M. Nyga, Y. Von Kaenel, and E. Blank, "Low temperature limits of diamond film growth by microwave plasma-assisted CVD," Diamond and related materials, vol. 5, no. 3-5, pp. 226-230, 1996.
    [35] Y. Mokuno, A. Chayahara, Y. Soda, Y. Horino, and N. Fujimori, "Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD," Diamond and Related Materials, vol. 14, no. 11-12, pp. 1743-1746, 2005.
    [36] Y. Mokuno, A. Chayahara, H. Yamada, and N. Tsubouchi, "Large single crystal diamond plates produced by microwave plasma CVD," in Materials Science Forum, 2009, vol. 615, pp. 991-994: Trans Tech Publ.
    [37] Y. Mokuno, A. Chayahara, H. Yamada, and N. Tsubouchi, "Improvements of crystallinity of single crystal diamond plates produced by lift-off process using ion implantation," Diamond and Related materials, vol. 19, no. 2-3, pp. 128-130, 2010.
    [38] Z. Feng, A. Chayahara, Y. Mokuno, H. Yamada, and S. Shikata, "Raman spectra of a cross section of a large single crystal diamond synthesized by using microwave plasma CVD," Diamond and Related Materials, vol. 19, no. 2-3, pp. 171-173, 2010.
    [39] Y. Mokuno, A. Chayahara, H. Yamada, and N. Tsubouchi, "Improving purity and size of single-crystal diamond plates produced by high-rate CVD growth and lift-off process using ion implantation," Diamond and Related Materials, vol. 18, no. 10, pp. 1258-1261, 2009.
    [40] Y. Mokuno, A. Chayahara, and H. Yamada, "Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process," Diamond and Related Materials, vol. 17, no. 4-5, pp. 415-418, 2008.
    [41] N. Tsubouchi, Y. Mokuno, H. Yamaguchi, N. Tatsumi, A. Chayahara, and S. Shikata, "Characterization of crystallinity of a large self-standing homoepitaxial diamond film," Diamond and Related Materials, vol. 18, no. 2-3, pp. 216-219, 2009.
    [42] N. Tsubouchi, Y. Mokuno, A. Chayahara, and S. Shikata, "Crystallinity of freestanding large undoped single crystal diamond plates produced using pre-ion-implanted substrates and lift-off processes," Diamond and Related Materials, vol. 19, no. 10, pp. 1259-1262, 2010.
    [43] N. Tsubouchi et al., "Characterization of a sandwich-type large CVD single crystal diamond particle detector fabricated using a lift-off method," Diamond and Related Materials, vol. 24, pp. 74-77, 2012.
    [44] M. Geis et al., "Large‐area mosaic diamond films approaching single‐crystal quality," Applied physics letters, vol. 58, no. 22, pp. 2485-2487, 1991.
    [45] M. Geis et al., "Mosaic diamond substrates approaching single-crystal quality using cube-shaped diamond seeds," Diamond and related materials, vol. 4, no. 1, pp. 76-82, 1994.
    [46] H. Yamada, A. Chayahara, H. Umezawa, N. Tsubouchi, Y. Mokuno, and S. Shikata, "Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size," Diamond and Related materials, vol. 24, pp. 29-33, 2012.
    [47] H. Yamada, A. Chayahara, Y. Mokuno, N. Tsubouchi, and S.-i. Shikata, "Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond," Diamond and Related Materials, vol. 33, pp. 27-31, 2013.
    [48] H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, "A 2-in. mosaic wafer made of a single-crystal diamond," Applied Physics Letters, vol. 104, no. 10, p. 102110, 2014.
    [49] H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, "Effects of crystallographic orientation on the homoepitaxial overgrowth on tiled single crystal diamond clones," Diamond and Related Materials, vol. 57, pp. 17-21, 2015.
    [50] C. Battaile, D. Srolovitz, and J. Butler, "Morphologies of diamond films from atomic-scale simulations of chemical vapor deposition," Diamond and Related Materials, vol. 6, no. 9, pp. 1198-1206, 1997.
    [51] C. Battaile, D. Srolovitz, and J. Butler, "A kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition: Application to diamond," Journal of applied physics, vol. 82, no. 12, pp. 6293-6300, 1997.
    [52] T. Vandevelde, T.-D. Wu, C. Quaeyhaegens, J. Vlekken, M. D’Olieslaeger, and L. Stals, "Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition," Thin solid films, vol. 340, no. 1-2, pp. 159-163, 1999.
    [53] A. SpringThorpe and A. Majeed, "Epitaxial growth rate measurements during molecular beam epitaxy," Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, vol. 8, no. 2, pp. 266-270, 1990.
    [54] Z. Lu, L. Zhang, X. Ma, N. Yao, and B. Zhang, "The growth process and field emission characteristics of spherical aggregates of polycrystalline diamond flakes," physica status solidi (c), vol. 9, no. 1, pp. 41-43, 2012.
    [55] http://www.slideshare.net/joybiitk/atomic-force-microscope-fundamental-principles.
    [56] http://en.wikipedia.org/wiki/Scanning_electron_microscope.

    無法下載圖示 校內:2023-07-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE