簡易檢索 / 詳目顯示

研究生: 洪梓淵
Hung, Tzu-yuan
論文名稱: 自人體牙周肉芽組織萃取間葉系幹細胞
Human mesenchymal stem cells from periodontal granulation tissue
指導教授: 袁國
Yuan, Kuo
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 66
中文關鍵詞: 牙周病肉芽組織間葉幹細胞
外文關鍵詞: periodontitis, granulation tissue, mesenchymal stem cells
相關次數: 點閱:167下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幹細胞的研究中,如何萃取與分離幹細胞是重要的部分。成體幹細胞可分為有血液幹細胞與間葉幹細胞。從過去的研究顯示,間葉幹細胞可以分化為造骨細胞、造軟骨細胞、脂肪細胞,甚至可以分化為心肌細胞或神經細胞。在間葉幹細胞的來源中,主要是自成人的骨髓。但在口腔中,有學者從脫落的乳牙牙胚、牙根周圍的牙周膜、發育中的根尖組織均分離出間葉幹細胞,並證明其分化能力。在牙周病發展的過程中,會有發炎細胞的浸潤,進而各種的發炎物質刺激下,形成牙周發炎組織,破壞齒槽骨。通常在牙周手術過程中,我們會將肉芽組織移除丟棄。假設可以從肉芽組織分離出間葉幹細胞,進而運用在牙周再生治療中。將是很有意義的,而且不用擔心免疫排斥的問題。
    首先我們利用牙周手術取出的發炎組織,用免疫染色,以間葉幹細胞表面抗原(STRO-1)標定,確認了發炎組織中的確有間葉幹細胞的存在。接下來將發炎組織的細胞分離,在培養皿中進行細胞培養。用低密度細胞群聚的模式,讓單一細胞形成一個一個群聚。再運用細胞染色的方式,將有表現間葉幹細胞表面抗原的細胞株加以培養。等培養到一定量,運用不同的培養條件,讓細胞株進行分化。分化形成成骨細胞、軟骨細胞、脂肪細胞。並運用不同的細胞標記抗體,驗證所分化的細胞的確表現骨細胞、軟骨細胞及脂肪細胞的特徵。接下來利用動物實驗模型驗證,用免疫缺陷的小鼠,在頭蓋骨製造關鍵大小的骨缺陷,用肉芽組織的幹細胞,運用在小鼠頭蓋骨缺損的修復,等術後八周,比較結果。發現在實驗組及對照組之間,的確因著肉芽組織的幹細胞存在與否,骨缺損的修復有著差異。
    這代表著肉芽組織分離的間葉幹細胞,具有分化成不同細胞的能力,也有促進骨缺損的修復。希望以後可以藉由自體間葉幹細胞的移植,進而增進牙周治療的再生效果。

    Isolating the stem cells from tissue is an important part for the research. There are two difference sources, the embryonic stem cells (ESCs) and the post-natal stem cells. The post-natal stem cells can be defined as the hematopoietic stem cells (HSCs) and the mesenchymal stem cells (MSCs). The MSCs can differentiate to the osteoblast, the chondrocyte, the adipocyte, and even the cardiac cells or neural cells. Most of the reports isolate MSCs from the bone marrow, but there are still some other sources of the MSCs. Regarding the oral tissues, MSCs have been isolated from the exfoliated deciduous teeth, from the periodontal ligament tissue, and from the dental pulp. These cells have the MSCs cell markers and can differentiate into osteoblast, chondrocyte, and adipocyte. In the process of periodontal disease, there are many inflammation cells infiltration. These cells secrete cytokines and irritate the granulation tissue formation. This procedure can lead to the alveolar bone resorption. In the periodontal surgery, we usually remove the granulation tissue, and graft the periodontal defect. It is meaningful to isolate the MSCs from the granulation tissue and use these cells in the following regeneration therapy. Rejection is not a concern from these cells.
    In this research, we first took the granulation tissue from periodontal defects, and used immunohistochemistry (IHC) to mark the MSCs. We used the STRO-1 as primary antibody and found the MSCs in the granulation tissue. Then we isolated the cells from the granulation tissue and used the CFU-F cell culture method. Then we isolated the STRO-1 positive cell clones. We used different conditions to induce these cells to differentiate into osteoblast, chondrocyte and adipocyte. We further confirmed the result by cell markers (the osteopontin, collagen II, PPAR-γ) and special staining assays (the Alizarin red, the Alcian blue and Oil-red staining). In the following animal experiments, we used the immunocompromised mice model, create a critical sized defect at calvaria (3 mm), and compare the result for test and control groups after 8 weeks. After examining the cranial specimens from test and control groups, the test group had significantly greater bony deposition area than control group.
    The granulation tissue derived stem cells can differentiate into osteoblast, chondrocyte and adipocyte, and can improve the repair of the bony defect. We propose the granulation tissue derived stem cells may improve the result of the periodontal surgery in the future.

    Chinese abstract …..……………...………………………………………….. I English abstract …………………..…………………………………………III Acknowledgement ………………………………………………………...... V Contents …………………………………………………….…………...…VII Contents of Figures …...…………….………………………………….…….X Abbreviation index ……………………………………………………….…XI Introduction …………………………………………………………………..1 1. Periodontitis ………………………………………………………..1 2. The stem cells ……………………………………………...………2 3. The mesenchymal stem cells (MSCs) …………………………..….3 3-1. To verify and induce differentiation of the MSCs ………………..4 3-2. The MSCs from oral tissue ……………………………………….7 4. The specific aim ……………………………………………………9 Materials and Methods …………………………………………...…………10 I. Material ……………………………………………………………....10 1. Human granulation tissue for STRO-1 IHC test …………….……10 2. Human granulation tissue for cell culture ……………………..….10 3. The experimental animal ………………………………………….10 4. The instruments …………………………………………….……..12 5. The reagents ………………………………………………………13 6. The experimental antibodies ……………………………………...14 7. The kit reagents ……………………………………………...……15 8. The consumables …………………...……………………………..15 II. Methods ……………………………………………...……………….16 1. Immunohistochemistry ……………………………………….…..16 2. Immunocytochemistry ……………………………………………18 3. Flow cytometry …………………………………………….……..19 4. Primary culture of the periodontal granulation tissue ………….…21 4-1. Cell counting …………………………………………………….22 4-2. CFU-F assay …………………………………………………….22 4-3. Cell subculture ………………………….……………………….23 4-4. Cell storage ………………………………………..…………….24 4-5. Defrost of the cells ………………………………………………25 5. Giemsa staining …………………………………….……………..25 6. The differentiation assay ………………………………………….26 6-1. Alizarin red staining ……………………………………………..28 6-2. Alcian blue staining ………………………………………….,….28 6-3. Oil Red-O staining ………………………………………...…….29 Results 1. IHC for STRO-1 in human granulation tissue ……………...……31 2. Flow cytometry of STRO-1 for human granulation tissue …….....31 3. The primary culture of the human granulation tissue ………...….32 4. The differentiation assays for GDSCs …….…………………..….33 4-1. The osteogenesis ………………………………………...………33 4-2. The chondrogenesis ……………………………………….……..34 4-3. The adipogenesis ………………………………………..……….34 5. The animal model …………………………………………...……34 Discussion …………………………………………………………………..36 Conclusion ……………………………………………………………….….42 References ..…………………………………………………………………44 Figures …………..…………………………………………………………..53 Autobiography ………………………………………………………………66

    Amri EZ, Grimaldi P, Negrel R, Ailhaud G (1984). Adipose conversion of OB17 cells: insulin acts solely as a modulator in the expression of the differentiation program. Exp Cell Res 152: 368–377.

    Barry F, Boynton RE, Liu B, Murphy JM (2001). Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268: 189–200.

    Bartold PM, Xiao Y, Lyngstaadas SP, Paine ML et al (2006). Principles and applications of cell delivery systems for periodontal regeneration. Periodontology 2000 41: 123–135.

    Beresford JN, Bennett JH, Leboy PS, Owen ME et al (1992). Evience for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102: 341–351.

    Boyan BD, Posner GH, Greising DM, Schwartz Z et al (1997). Hybrid structural analogues of 1,25-(OH)2D3 regulate chondrocyte proliferation and proteoglycan production as well as protein kinase C through a nongenomic pathway. J Cell Biochem 66:457–470.

    Boyan BD, Chang Z, Dean DD, Schwartz Z et al (1998). Arachidonic acid is an autocoid mediator of the differential action of 1,25-(OH)2D3 and 24,25-(OH)2D3 on Growth Plate Chondrocytes. J Cell Phys 176: 516–524.

    Caffesse RG, Ramfjord SP, Nasjleti CE (1968). Reverse bevel periodontal flaps in monkeys. J Periodontol 39: 219–225.

    Caffesse RG, Castelli WA, Nasjleti CE (1981). Vascular response to modified Widman flap surgery in monkeys. J Periodontol 52: 1–8.

    Caffesse RG, Castelli WA, Nasjleti CE (1984). Revascularization following the lateral sliding flap procedure.JPeriodontol 55:352–359.

    Caffesse RG, Smith BA, Castelli WA, Nasjleti CE(1988). New attachment achieved by guided tissue regeneration in beagle dogs. J Periodontol 59:589–594

    Castro-Malaspina H, Gay RE, Meyers P, Moore MA et al (1980). Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56: 289–301.

    Chen SP, Pitaru S, Lokiec F, Savion N (1998). Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture. Bone 23:111–117.
    Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV (1994). Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134: 277–286.

    Clarke E, McCann SR (1989). Age dependent in vitro stromal growth. Bone Marrow Transplant 4: 596–597.

    Cowan CM, Shi YY, Chou YF, Thomas R, Longaker MT et al (2004). Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22: 560–567.

    Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002). The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170:73–82

    D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999). Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14: 1115–1122.

    Digrolamo CM, Stokes D, Colter D, Phinney DG (1999). Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107: 275–281.

    Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3: 393–403.

    Friedenstein AJ (1980). Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus 25: 19–29.

    Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T (2006). Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207: 331–339.

    Gronthos S, Simmons PJ (1996). The biology and application of human bone marrow stromal cell precursors. J. Hematother. 5: 15–23.

    Hansen JB, Petersen RK, Flindt EN, Kristiansen K et al (2001). Peroxisome proliferators-activated receptor γ (PPARγ) – mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. J Biol Chem 276: 3175–3182.

    Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002). Isolation and Characterization of Size-Sieved Stem Cells from Human Bone Marrow. Stem Cells 20: 249–258.

    Joyner CJ, Bennett A, Triffitt JT (1997) Identification and enrichment of human osteoprogenitor cells by using differentiation stagespecific monoclonal antibodies. Bone 21:1–6.

    Kawaguchi H, Hirachi A, Kato Y, Kurihara H et al (2004). Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol 75:1281–1287.

    Lappin DF, Koulouri O, Radvar M, Hodge P, Kinane DF (1999). Relative proportions of mononuclear cell types in periodontal lesions analyzed by immunohistochemistry. J Clin Periodontol 26:183–189.

    Lappin DF, Kinane DF (2001). Clinical, pathological and immunological aspects of periodontal disease. Acta Odontol 59: 154–160.

    Lennon DP,Edmison JM,Caplan A (2001). Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and
    in vivo osteochondrogenesis. J Cell Physiol 187: 345–355.

    Lindhe J, Lang NP, Karring T et al (2008). Text book of Clinical periodontology and implant dentistry. Fifth edition.

    Lowell S, Benchoua A, Heavey B, Smith AG (2006). Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 4: e121.

    Meisel P, Giebel J, Peters M, Kocher T et al (2002). Expression of N-acetyltransferases in periodontal granulation tissue. J Dent Res 81: 349–353.

    Mizuno H, Zuk PA, Zhu M, Lorenz HP et al (2002). Myogenic differentiation by human processed lipoaspirit cells. Plast Resconst Surg 109: 199–209.

    Mostafa SS, Miller WM, Papoutsakis ET (2000). Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. Br J Haematol 111: 879–889.

    Murphy KG, Gunsolley JC (2003). Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A Systematic Review. Ann Periodontol 8: 266–302.

    Noshi T, Yoshikawa T, Yonemasu K, Ohgushi H et al (2000). Recombinant human bone morphogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. Artif organs 25: 201–208.

    Oreffo R, Cooper C, Mason C, Clements M (2005). Mesenchymal stem cells
    lineage, plasticity, and skeletal therapeutic potential. Stem Cell Reviews 1: 169–178.

    Peter SJ, Liang CR, Kim DJ, Widmer MS, Mikos AG (1998). Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, β-glycerophosphate, and L-ascorbic acid. J Cell Biochem 71: 55–62.

    Phinney DG, Kopen GC, Prockop DG (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. PNAS 96:10711–10716.

    Pittenger MF, Douglas R, Moorman MA, Craig S et al (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.

    Qiu Z, Wei Y, Chen N, Wi J, Liao K et al (2001). DNA synthesis and mitotic clonal expansion is not a required step for 3T3-L1 preadipocyte differentiation into adipocyte. J Biol Chem 276:11988–11995.

    Schmitzd JP, Ollingerd JH (1988). The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205: 299–308.

    Schwartz Z, Mellonig JT, Cochran DL, Boyan BD et al (1998). Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol 69: 470–478.

    Semenza GL et al(2001). HIF-1α, O2, and the 3PHDs: how animal cells signal hypoxia to the nucleus. Cell 107: 1–3.

    Shi S, Gronthos S, Mankani M, Brahim J, Robey PG (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. PNAS 97: 13625–13630.

    Shi S, Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG (2003). SHED: Stem cells from human exfoliated deciduous teeth. PNAS 100: 5807–5812.

    Shi S, Seo BM, Miura M, Gronthos S, Young M et al (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364: 149–155.

    Shi S, Sonoyama W, Liu Y, Fang D, Seo BM, Wang S et al (2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE 1: 1–8.

    Shi S, Seo BM, Sonoyama W, Lee JS, Yamaza T et al (2008). SHED repair critical-size calvarial defects in mice. Oral Diseases 14: 428–434.

    Simmons PJ, Torok-Storb B (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78: 55–62.

    Stahl SS, Froum SJ, Kushner L (1982). Periodontal healing following open debridement flap procedures. II. Histologic observation. J Peridontol 53: 15–21.

    Sylvester KG, Longaker MT (2004). Stem cells: review and update. Arch Surg 139:93–99.
    Teng HC, Lee CH, Tsai CC, Chang YY, Wu YM et al (2003). Life style and psychosocial factors associated with chronic periodontitis in Taiwanese adults. J Periodontol 74: 1169–1175.

    Wabitdch M, Hauner H, Heinze E, Teller WM (1995). The role of growth hormone/ insulin-like growth factors in adipocyte differentiation. Metabolism 44: 45–49.

    Wang HL, Fiorellini J, Offenbacher S, Salkin L et al (2005). Periodontal regeneration. J Periodontol 76: 1601–1622.

    Yeh WC, Cao Z, Classon M, McKnight SL (1995). Cascade regulation of terminal adipocyte differentiation by three members of C/EBP family of leucine zipper proteins. Genes & Dev 9: 168–181.

    Zhou S, Lechpammer S, Greenberger JS, Glowacki J (2005). Hypoxia inhibition of adipocytogenesis in human bone marrow stromal cells requires transforming growth factor-β/Smad3 Signaling. J Biol Chem 280: 22688–22696.

    Zuk PA, Zhu M, Mizuno H, Hedrick MH et al (2001). Mulitilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering 7:211–28.

    下載圖示 校內:2012-08-25公開
    校外:2014-08-25公開
    QR CODE