| 研究生: |
張振賢 Chang, Chen-Hsien |
|---|---|
| 論文名稱: |
支架及凹槽駐焰器之幾何尺寸對超音速燃燒流場影響之數值模擬分析 Numerical Simulation Analysis of the Influence of the Geometric Dimensions of Strut and Cavity Flame Holder on the Supersonic Combustion Flow |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 駐焰模組 、支架駐焰器 、超音速燃燒 |
| 外文關鍵詞: | Supersonic Combustion, Flame Holding Mechanism, Strut Flame-Holder, Numerical Simulation |
| 相關次數: | 點閱:62 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超音速燃燒衝壓引擎是迄今為止各國航太領域之重點研究項目,此設計是為了避免因氣流在進入燃燒室之溫度過高及過多壓力損失,使得燃燒室效能降低。而在超音速燃燒衝壓引擎中,在燃燒室入口處氣流必須保持在超音速狀態,此導致在燃燒室中空氣與燃料必須在極短時間內相互均勻混合並進行燃燒反應。為了使得燃燒室中有足夠的時間混合燃料及空氣,在燃燒室中加入駐焰機構如:支架、凹槽,使得燃燒室內部產生低速回流區,以利於空氣與燃料均勻的混合,最終使得燃燒反應穩定進行。本研究為了探討支架及凹槽駐焰器之幾何尺寸對超音速燃燒流場之影響,使用CFD軟體ANSYS FLUENT對具有加裝支架及凹槽之燃燒室進行數值模擬分析。本研究先針對不同支架頂角進行超音速流場分析,該支架頂角分別為18.45度、39度、60.5度,結果發現39度之總壓損失較其餘兩者大,其原因在於39度之震波結構上多了正震波,使得氣流通過正震波後,所引起的能量損失相較於斜震波來得大;緊接著固定支架頂角為60.5度及凹槽斜壁面後傾角度為22.5度,在不同凹槽L/D值下,發現凹槽尺寸的擴大僅使得支架後方至凹槽斜壁面之間之流場結構加長延伸,也因此支架後端之流場結構上並未因為L/D值的增加而有明顯改變;接下來固定支架頂角為60.5度及凹槽L/D值為5,在不同凹槽斜壁面後傾角下,發現後傾角67.5度之燃燒室兩側壁面皆出現具範圍之低速(次音速)回流區,此因後傾角的傾斜度強化了支架與邊牆之間的流場交互作用所導致。
本研究探討超音速燃燒流場,以固定支架頂角為39度、凹槽L/D值為3、後傾角為22.5度為固定條件,改變支架上之噴注質量流率,結果發現7g/s之燃燒狀況較12g/s來得好,此因為油氣當量比的分布較適合燃燒反應的進行;再以固定支架頂角為60.5度、凹槽斜壁面後傾角為22.5度下,改變凹槽L/D值,結果發現L/D值為3時,出現單一側邊近壁面點燃的現象,此因為在燃燒過程中之一特定秒數下,槽內噴注口左側及右側液滴承受氣流相對速度大小之差異所造成破碎量之不同,使得噴注口左側較右側之油氣當量比較適合點燃,最終導致單一側邊迅速燃燒,但是在L/D值為5時,在燃燒室兩邊壁面皆出現點燃區域,並在支架上之噴注口周遭各自形成一渦流使液滴在其中破碎、霧化並順勢點燃。
In this study, the ANSYS FLUENT software for numerical simulation analysis was used to analyze the supersonic combustion flow field with different geometric parameters. First, we established the mesh model, boundary conditions, and ignition method, and then modified vertex angle of the strut, L/D ratio and the ramp angle of cavity, and simulated the supersonic combustion flow field. Finally, we determined the influence of the geometric dimensions of the strut and cavity flame-holder on the supersonic combustion flow.
In the supersonic flow field, we investigated the effect of the vertex angles of strut on the total pressure loss, while the vertex angles of 18.45, 39 and 60.5 degrees, respectively. The simulation results show that the case of 39 degrees has a normal shock wave structure in flow field. Therefore, the total pressure loss of the 39 degrees case is larger than 18.45 degrees and 60.5 degrees cases.
Besides, the simulation results show that the increase of the cavity size does not significantly change the flow field structure in condition of the vertex angle of the strut is 60.5 degrees, ramp angle of the cavity is 22.5 degrees.
The study also show that when the ramp angle is changed from 22.5 degrees to 67.5 degrees, a low-speed zone appears around both side walls during the combustion process, where vertex angle of the strut is 60.5 degrees, L/D ratio of the cavity is 5. This phenomenon is due to the inclination of the strut strengthens the interaction of the flow field between the strut and the side wall.
In addition to the above results, we explore the influence of changing the injection mass flow of the strut on combustion situation. The results show that the combustion situation of 7g/s is better than that of 12g/s when vertex angle of the strut is 39 degrees, L/D ratio of the cavity is 3, and the ramp angle is 22.5 degrees. This phenomenon is because of the distribution of the fuel-air equivalence ratio is more beneficial for the combustion reaction.
The results show that the JP-4 is ignited on the single side wall of the combustion chamber occurs when the L/D ratio of the cavity is 3. It is caused by the difference in the relative velocities of the airflow on the left and right sides of the injection, while vertex angle of the strut is 60.5 degrees, ramp angle is 22.5 degrees. The results also show that the JP-4 is ignited on the two side walls of the combustion chamber when L/D ratio of the cavity is 5, while vertex angle of the strut is 60.5 degrees, ramp angle is 22.5 degrees.
【1】 Powell, O. A., Edwards, J. T., Norris, R. B., Numbers, K. E., and Pearce, J. A., 2001,“Development of Hydrocarbon-Fueled Scramjet Engines: The Hypersonic Technology Program,”Journal of Propulsion and Power, Vol.17, No.6, pp.1170-1176.
【2】 Lewis, M. J., 2001,“Significance of Fuel Selection for Hypersonic Vehicle Range,”Journal of Propulsion and Power, Vol.17, No.6, pp.1214-1221.
【3】 Tetlow, M. R., and Doolan, C. J., 2007,“Comparison of Hydrogen and Hydrocarbon-Fueled Scramjet Engine for Orbital Insertion,”Journal of Spacecraft and Rockets, Vol.44, No.2, pp.365-373.
【4】 Manna, P., Behera, R., and Chakraborty, D., 2008,“Liquid-Fueled Strut-Based Scramjet Combustor Design: a Computational Fluid Dynamics Approach,”Journal of Propulsion and Power, Vol.24, No.2, pp.274-281.
【5】 Lin, K. C., Kirkendall, K. A., Kennedy, P. J., and Jackson, T. A., 1999,“Spray Structures of Aerated Liquid Fuel Jets in Supersonic Crossflows,”35th AIAA Joint Propulsion Conference and Exhibit, AIAA1999-2374.
【6】 Yu, G., Li, J. G., Yang, S. R., Yue, L. J., and Zhang, X. Y., 2002,“Investigation of Liquid Hydrocarbon Combustion in Supersonic Flow Using Effervescent Atomization,”38th AIAA Joint Propulsion Conference and Exhibit, AIAA2002-4279.
【7】 Yue, L. J., and Yu, G., 2003,“Studies on Spray Characteristics of Barbotaged Atomizer,” Journal of Propulsion Technology, Vol.24, No.4, pp.348-352.
【8】 Balasubramanyam, M. S., and Chen, C. P., 2006,“Evaporating Spray in Supersonic Streams including Turbulence Effects,”AIAA Aerospace Sciences Meeting and Exhibit.
【9】 Yue, L. J., and Yu, G., 2004,“Numerical Simulation of Kerosene Spray in Supersonic Cross Flow,”Journal of Propulsion Technology, Vol.25, No.1, pp.11-14.
【10】 Li, P., Wang, Z., Bai, X. S., Wang, H., Sun, M., Wu, L., Liu, C., 2019, “Three-Dimensional Flow Structures and Droplet-Gas Mixing Process of a Liquid Jet in Supersonic Crossflow,” Aerospace Science and Technology, Vol. 90, pp.140-156.
【11】 Im, K. S., Lin, K. C., and Lai, M. C., 2005,“Spray Atomization of Liquid Jet in Supersonic Cross Flows,”43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA2005-732.
【12】 Im, K. S., Lin, K. C., Lai, M. C., and Chon, M. S., 2011,“Breakup Modeling of a Liquid Jet in Cross Flow,”International Journal of Automotive Technology, Vol.12, pp.489-496.
【13】 劉靜, 徐旭, 2010,“超音速橫向氣流中燃料霧化的數值模擬,”北京航空航天大學學報, Vol.36, No.10.
【14】 Yang, D. C., Zhu, W. B., Chen, H., Guo, J. X., and Liu, J. W., 2014,“Numerical Investigation of Scale Effect of Various Injection Diameters on Interaction in Cold Kerosene-Fueled Supersonic Flow, Vol.35, No.1, pp.62-68.
【15】 Zhu, L., Qi, Y.Y., Liu, W.L., Xu. B.J., Ge. J.R., Xuan, X.C., Jen, T.C., 2016, “Numerical investigation of scale effect of various injection diameters on interaction in cold kerosene-fueled supersonic flow,” Acta Astronautica, Vol. 129, pp.111-120
【16】 楊成麥,2019,“噴霧模式之參數對液態燃料注入超音速流場數值擬分析影響之研究,”國立成功大學航空太空工程學系碩士論文.
【17】 沈雅蓁, 2015, “側向雙垂直噴注於超音速空氣流場之霧化混合探討,” 國立成功大學航空太空工程學系碩士論文.
【18】 Chenault, C. F., and Beran, P. S., 1998,“k- and Reynolds Stress Turbulence Model Comparisons for Two-Dimensional Injection Flows,”AIAA Journal, Vol. 36, pp.1401-1412.
【19】 Menter, F. R., 1994,“Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,”AIAA Journal, Vol.32, pp.1598-1605.
【20】 Liu, O. Z., Cai, Y. H., Hu, Y. L., Liu, J. H., and Ling, W. H., 2007,“The Turbulence Models for Numerical Analysis of Liquid Kerosene Supersonic Combustion,”Acta Aerodynamica Sinica, Vol.25, pp.362-367.
【21】 宋緯倫, 2010,“不同紊流模式對超音速流場數值模擬結果之影響,”國立成功大學航空太空工程學系碩士論文
【22】 Aso, S., Okuyama, S., Kawai, M., and Ando, Y., 1991,“Experimental Study on Mixing Phenomena in Supersonic Flows with Slot Injection,”29th Aerospace Sciences Meeting, AIAA1991-16.
【23】 Gruber, M. R., Bauerle, R. A., Mathur, T., and Hsu, K. Y., 2001,“Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors,”Journal of Propulsion and Power, Vol.17, No.1, pp.146-153
【24】 Gruber, M. R., Donbar, J. M., Carter, C. D., and Hsu, K. Y., 2004,“Mixing and Combustion Studies Using Cavity-Based Flameholders in a Supersonic Flow,”Journal of Propulsion and Power, Vol.20, No.5, pp.769-778.
【25】 Barnes, F. W., Segal, C., 2015, “Cavity-Based Flameholding for Chemically-Reacting Supersonic Flows,” Progress in Aerospace Sciences, Vol. 76, pp. 24-41.
【26】 Liu, O. Z., Hu, Y. Z., Cai, Y. H., Liu, J. H., and Ling, W. H., 2003,“Overview of Flameholders of Cavities in Supersonic Combustion,”Journal of Propulsion Technology, Vol.24, No.3, pp.265-271.
【27】 Yu, G., Li, J. G., Chang, X. Y., Chen, L. H., and Sung, C. J., 2003,“Fuel Injection and Flame Stabilization in a Liquid-Kerosene-Fueled Supersonic Combustor,”Journal of Propulsion and Power, Vol.19, No.5, pp.885-893.
【28】 鄭瑞圻, 2013,“使用液態碳氫燃料之超音速燃燒流場模擬分析,”國立成功大學航空太空工程學系碩士論文.
【29】 郭建嘉, 2017,“凹槽機構對液態燃料噴注之超音速燃燒流場影響之數值模擬分析,”國立成功大學航空太空工程學系碩士論文.
【30】 Freeborn, A. B., King, P. I. and Gruber, M. R., “Swept-Leading-Edge Pylon Effects on a Scramjet Pylon-Cavity Flameholder Flowfield,” Journal of Propulsion and Power, Vol. 25, No. 3, 2009.
【31】 張根榜, 2013, “雙噴注凹槽機構在超音速燃燒流場下之數值模擬分析” 國立成功大學航空太空工程學系碩士論文.
【32】 陳威廷, 2020, “雙噴注凹槽機構在超音速燃燒流場下之數值模擬分析” 國立成功大學航空太空工程學系碩士論文.
【33】 Cuppoletti, D., Ombrello, T., Carter, C., Hammack, S., Lefkowitz, J., 2020,“Ignition Dynamics of a Pulse Detonation Igniter in a Supersonic Cavity Flameholder,”Combustion and Flame, Vol.215, pp.376-388.
【34】 Li, A., Ge, Y., Wei, X., Li, T., 2016,“Mixing and Combustion Modeling of Hydrogen Peroxide/Kerosene Shear-Coaxial Jet Flame in Lab-Scale Rocket Engine,”Aerospace science and technology, Vol.56, pp.148-154.
【35】 郭俊淇, 2016, “W2(煤油基)/過氧化氫推進劑液旋噴注機構之自燃特性分析,” 國立成功大學航空太空工程學系碩士論文.
【36】 劉啟文, 2020,“超音速燃燒流場點火與噴霧特性研究之數值模擬分析,” 國立成功大學航空太空工程學系碩士論文.
【37】 盧廷晏, 2021,“不同噴柱參數及駐焰模組參數對超音速燃燒反應流場影響之數值模擬分析,” 國立成功大學航空太空工程學系碩士論文.
【38】 ANSYS FLUENT, 2013,“Ansys Fluent 15.0 Theory Guide,”ANSYS Inc.
【39】 Ranz, W. E., and Marshall, W. R., Jr., 1952,“Evaporation from Drops, Part II,”Chemical Engineering Progress Magazine, Vol.48, pp.173-180.
【40】 Jarosław, M., Konrad, Ś., Massimo, S., Pierluigi, L., 2011,“Advanced Methods of Solid Oxide Fuel Cell Modeling,” Springer
【41】 蔡忠恩, 2019, “超音速流場之凹槽內外噴注特性觀察,” 國立成功大學航空太空工程學系碩士論文.
【42】 石油產品規範,“航空燃油JP-4規範,” 台灣中油股份有限公司.
【43】 Tian Y., Yang S.,Xiao B.,Zhong F., Le J. , 2019 “Investigation of Ignition Characteristics in a Kerosene Fueled Supersonic Combustor,” Acta Astronautica, Volume 161, Pages 425-429
【44】 Zhang X., Qin L., Chen H., He X., Liu Y. , 2014 ,“Radical Recombination in a Hydrocarbon-Fueled Scramjet Nozzle,” Acta Astronautica, Volume 27, Pages 1413-1420.