簡易檢索 / 詳目顯示

研究生: 沈明緯
Shen, Ming-Wei
論文名稱: 具HHT算法之阻抗量測於鑽骨控制系統之穿透偵測
HHT-Based Impedance Measurement for Breakthrough Detection of Bone Drilling Control System
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 78
中文關鍵詞: 類PID速度控制器強健控制速度型Luenberger觀測器希爾伯特-黃轉換傳感矩陣鑽骨系統
外文關鍵詞: PID-like velocity controller, robust control, speed Luenberger observer, Hilbert Huang Transform, transduction matrix, bone drill system
相關次數: 點閱:139下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出類PID速度控制器(PID-like Velocity Controller)實現於鑽骨控制系統,不同於傳統強健設計方法得到的高階控制器,此設計架構可直接求解得到PID控制器的常數值增益。為了解決感測器雜訊問題,使用速度型Luenberger觀測器(Speed Luenberger Observer),以降低因雜訊靈敏度所造成的電壓波動問題,亦藉由強健設計方法得到純常數之補償器增益。此外,為了判斷鑽孔穿透時機與降低穿透誤判,本論文於速度命令中加入一特定頻率之弦波訊號,使馬達同時具有直流與特定頻率弦波之特徵訊號,並結合希爾伯特-黃轉換(Hilbert Huang Transform, HHT)與單頻傳感矩陣(Transduction Matrix),分別求得兩頻率之等效機械阻抗,用於判斷鑽孔穿透時機。藉由模擬與實驗結果驗證本論文所提的HHT算法,於阻抗量測應用上能有效判斷鑽穿時機。

    This thesis presents a PID-like velocity controller implemented in bone drilling control system, which is different from the high-order dynamic controller designed with the traditional robust control methods, but enables the retrieve the constant gains of the controller at once via robust design methods. In order to eliminate sensor noises, a speed Luenberger observer is proposed to reduce voltage variation resulted from noise sensitivity and obtain the constant gains of the compensator. Moreover, to determine the moment of breakthrough and prevent the deviation of drilling, a specific frequency sinusoidal signal is added to the velocity command. Thus, the motor can have the characteristic signals which combined the DC and specific frequency sinusoidal signals; further, combining Hilbert Huang Transform (HHT) with single-frequency transduction matrix, the equivalent mechanical impedances of two frequencies are obtained and provided for breakthrough detection. Compared the results of the simulation and experiment, the feasibility of the proposed HHT-based impedance measurement is verified to detect breakthrough point.

    摘要 I Abstract II 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 符號表 XVII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.3 論文架構 12 第二章 控制器設計 13 2.1 馬達參數系統識別 14 2.2 類PID速度控制器 16 2.2.1 類PID速度控制器架構 16 2.2.2 內外迴路頻寬設計方法 17 2.2.3 強健設計方法 19 2.3 速度型Luenberger觀測器 32 2.3.1 速度型Luenberger觀測器架構 34 2.3.2 強健設計方法 38 第三章 阻抗量測 45 3.1 傳感矩陣推導 45 3.2 希爾伯特-黃轉換(Hilbert Huang Transform) 52 第四章 實驗系統架構與實驗結果 62 4.1 實驗系統架構介紹 62 4.2 控制器實現 65 4.3 HHT算法之阻抗量測於木板穿透偵測 66 4.4 HHT算法之阻抗量測於鑽骨穿透偵測 69 第五章 結論與外來研究建議 71 5.1總結 71 5.2 未來研究建議 72 參考文獻 73

    [1] A. Al-Refai and N. Bata, “Evaluating Measurement and Process Capabilities by GR&R with Four Quality Measures,“ Measurement, vol. 43, pp. 842–851, 2010.
    [2] A. R. Eriksson, and T. Albrektsson, “The Effect of Heat on Bone Regeneration: An Experimental Study in the Rabbit Using the Bone Growth Chamber,” Journal of Oral & Maxillofacial Surgery, vol. 42, pp.70.-711, 1984.
    [3] A. R. Eriksson, and T. Albrektsson, “The Temperature Threshold Levels for Heat-Induced Bone Tissue Injury: A Vital-Microscopic Study in the Rabbit,” Journal of Prosthetic Dentistry, vol. 50, pp.101.-107, 1983.
    [4] B. Allotta, F. Belmonte, L. Bosio, and P. Dario,”Study on a Mechatronic Tool for Drilling in the Osteosynthesis of Long Bones: Tool/Bone Interaction, Modeling and Experiments,” Mechatronics, vol 6, pp. 447-459, 1996.
    [5] B. B. G. M. Franssen, P. J. van Diest, A. H. Schuurman, and M. Kon, “Drilling K-wires, What about the Osteocytes? An Experimental Study in Rabbits,” Archives of Orthopaedic Trauma Surgery, vol. 128, pp.83.-87, 2008.
    [6] B. Weichbrodt, “Mechanical Signature Analysis, A New Tool for Product Assurance and Early Fault Detection,” Defense Technical Information Center, 1968.
    [7] C. L. Lin, “GA-Based Multiobjective PID Control for a Linear Brushless DC Motor,” IEEE/ASME Transactions on Mechatronic, vol. 8, no.1, pp. 56-65, March 2003.

    [8] C. Liang, F. Sun, and C. A. Rogers, “Electro-Mechanical Impedance Modeling of Active Material Systems”, Smart Mater. Struct., vol. 5, pp.171-186, 1996.
    [9] D. M. Peairs, B. Grisso, D. J. Inman, K. R. Page, and R. Athman,"Proof-of-Concept Application of Impedance-Based Health Monitoring on Space Shuttle Ground Structures." NASA Technical Report, 2003.
    [10] E. Mallett, and R. C. G. Williams. "A Method of Measuring Mechanical Impedance." Wireless Section, Institution of Electrical Engineers Proceedings, vol. 5, pp. 106-111, 1930.
    [11] F. R. Ong, and K. Bouazza-Marouf, “Drilling of Bone: A Robust Automatic Method for the Detection of Drill Bit Break-Through,” Proceedings of the Institution of Mechanical Engineerings, Part H: Journal of Engineering in Medicine, vol. 212, pp. 209-221, 1998.
    [12] F. R. Ong, and K. Bouazza-Marouf, “The Detection of Drill Bit Break-Through for the Enhancement of Safety in Mechatronic Assisted Orthopaedic Drilling,” Mechatronics, vol. 9, pp. 565-588, 1999.
    [13] G. Alici, and R. W. Daniel, “Robotic Drilling under Force Control: Execution of a Task,” Proceedings of the IEEE/RSJ/GI International Conference, vol. 3, pp. 1618-1625. 1994.
    [14] G. Ellis, “Control System Design Guide,” USA: Elsevier Science, 2004.
    [15] G. Ellis, “Observer in Control Systems: A Practical Guide,” San Diego: Academic Press, 2002.
    [16] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, “Feedback Control of Dynamic Systems,” New York : 6th edn. Addison Wesley, 2009.
    [17] H. J. Salane, J. W. Baldwin Jr, and R. C. Duffield, “ Dynamics Approach for Monitoring Bridge Deterioration,” 60th Annual Meeting of the Transportation Research Board, pp. 21-28, 1981.
    [18] H. Kimura, “Chain-Scattering Approach to Control,” Boston: Birkhäuser, 1997.
    [19] H. M. Hondori, “Measuring Human Arm’s Mechanical Impedance for Assessment of Motor Function,” PHD Thesis, 2012.
    [20] H. Ohashi, M. Therin, A, Meunier, and P. Christel, “The Effect of Drilling Parameters on Bone,” Journal of Materials Science: Materials in Medicine, vol. 5, pp.237-241, 1994.
    [21] H. P. Olesen, and R. B. Randall, “A Guide to Mechanical Impedance and Structural Response Techniques,” BRUEL & KJAER Application Notes, 1970.
    [22] http://www.mendmyhip.com/hip-bone-femur-injuries/hip-osteonecrosis-treatments.php
    [23] http://www.ni.com/compactrio/zht/
    [24] I. Diaz, J. J. Gil, and M. Louredo, “Bone Drilling Methodology and Tool Based on Position Measurements,” Computer Methods and Programs in Biomedicine, vol. 112, pp. 284-292, 2013.
    [25] I. Muharrem, M. Bulent, E. Kadir, H. Ahmet, and E. Nurzat, “The Factors Affecting Thermal Necrosis Secondary to the Application of the Ilizarov Transosseous Wire,” Archives of Orthopaedic Traumatology, vol. 39, pp.70-75, 2005.
    [26] J. B. He, Q. G. Wang and T. H. Lee, “PI/PID controller tuning via LQR approach,” Chemical Engineering Science, vol. 55, pp.2429-2439, 2000.
    [27] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space Solutions to Standard H2 and H∞ Control Problems,” IEEE Trans on Automatic Control, vol. 34, pp. 831-847, 1989.
    [28] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” ASME, 1942.
    [29] K. Bouazza-Marouf, I. Browbank, and J. R. Hewit, “Robot-Assisted Invasive Orthopaedic Surgery,” Mechatronics, vol. 6, pp. 381-397, 1996.
    [30] L. S. Matthews, C. A. Green, and S. A. Goldstein, “The Thermal Effects of Skeletal Fixation-Pin Insertion in Bone,” Journal of Bone Joint Surgery, vol. 66, pp.1077-1083, 1984.
    [31] M. C. Tsai, and D. W. Gu, “Robust and Optimal Control: A Two-port Framework Approach,” London: Springer, 2014
    [32] M. Flynn, “Regression Analysis of Automated Measurement Systems,” IEEE Transaction on Instrumentation and Measurement, vol. 58, pp.3373-3379, 2009.
    [33] M. S. Ju, H. M. Vong, C. C. K. Lin, and S. F. Ling, “Development of Soft Tissue Stiffness Measuring Device for Minimally Invasive Surgery by Using Sensing Cum Actuating Method”. 13th international conference on biomedical engineering IFMBE proceedings, vol. 23, pp. 291-295, 2009.
    [34] N. Bertollo, and W. R. Walsh, “Drilling of Bone: Practicality, Limitations and Complications Associated with Surgical Drill-Bits, Biomechanics in Applications,” Croatia: InTech Europe, 2011.
    [35] N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zhen, N. C. Yen, C. C. Tung, and H. H. Liu, “The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis,” Proc. Roy. Soc. London A, vol.454, pp.903-995, 1998.
    [36] P. N. Brett, D. A. Baker, L. Reyes, and J. Blanshard “An Automatic Technique for Micro-Drilling a Stapedotomy in the Flexible Stapes Footplate” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 209, pp. 255-262, 1995.
    [37] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Analysis and Design of Analog Integrated Circuits,” New York: Wiley. §3.2, ISBN 0471321680, pp. 172, 2001.
    [38] P. W. Hsieh, “Synchronized Motion Control of Dual Motors,” unpublished.
    [39] S. F. Ling, Y. Xie, “Detecting Mechanical Impedance of Structure Using the Sensing Capability of a Piezoceramic Inertial Actuator,” Sensors and Actuators A, vol. 93, pp. 243-249, 2001.
    [40] S. W. Sung, J. Lee, and I. B. Lee, “Process Identification and PID Control,” Wiley-IEEE Press, 2009.
    [41] T. R. Comstock, F. S. Tse, and R. L. Jason, "Application of Controlled Mechanical Impedance for Reducing Machine Tool Vibrations." Journal of Manufacturing Science and Engineering, vol. 91, pp. 1057-1062, 1969.
    [42] V. Colla, and B. Allotta, “Wavelet-Based Control of Penetration in a Mechatronic Drill for Orthopaedic Surgery,” IEEE International Conference on Robotics and Automation, vol. 1, pp.711-716, 1998.
    [43] W. Y. Lee, and C. L. Shih, “Control and Breakthrough Detection of a Three-Axis Robotic Bone Drilling System,” Mechatronics, Vol. 16, pp. 73-84, 2006.
    [44] W. Y. Lee, C. L. Shih, and S. T. Lee, “Force Control and Breakthrough Detection of a Bone-Drilling System,” IEEE/ASME Transactions on Mechatronics, vol. 9, pp. 20-29 .
    [45] Z. Wu and N.E. Huang, “Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method,” Advances in Adaptive Data Analysis, Vol. 01, Issue 01, January 2009.
    [46] 吳建諭,永磁馬達特性快速檢測系統設計,國立成功大學機械工程學系碩士論文,2010。
    [47] 吳楷聲,蔡明祺,伺服控制系統之實務參數設計,中國機械工程學會第19屆全國學術研討會,2002年。
    [48] 林承穎,基於電流訊號之轉矩估測器設計於動力輔助輪椅之應用,國立成功大學機械工程學系碩士論文,2012。
    [49] 林紹凱,基於HHT的無刷馬達系統線上健康監測,國立成功大學機械工程學系碩士論文,2013。
    [50] 柯柏任,阻抗量測監控之研究於自動化鑽骨系統應用,國立成功大學機械工程學系,博士班研究進度報告書,2015。
    [51] 孫清華,最新無刷直流馬達,全華科技圖書股份有限公司,2002。
    [52] 黃希文,以感測致動法發展微創手術用軟組織剛性量測儀,國立成功大學機械工程學系碩士論文,2008。
    [53] 黃國豪,應用希爾伯特黃變換(HHT)之邊際譜分析於旋轉機械的元件鬆脫故障診斷,國立中央大學光機電工程研究所,碩士論文,2009。

    下載圖示 校內:2020-09-07公開
    校外:2020-09-07公開
    QR CODE