| 研究生: |
陳鴻勝 Chen, Hung-Sheng |
|---|---|
| 論文名稱: |
濕氣引起 eWLB 封膠晶圓膨脹研究 Moisture Induced Swell Study of eWLB Molded Wafer |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | eWLB 、封膠晶圓 、吸濕率 、Non-Fickian 模式 、尺寸膨脹 、濕氣膨脹係數 |
| 外文關鍵詞: | eWLB, molded wafer, moisture sorption rate, Non-Fickian model, swelling, coefficient of moisture expansion |
| 相關次數: | 點閱:150 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
消費性電子產品之構裝方式因應市場需求及技術演進,在塑膠封裝方面由釘架產品P-DIP、PLCC、PQFP,至球狀陣列產品BGA 、LBGA 、VFBGA,乃至覆晶封裝的FCBGA等等,I/O 密度愈來愈高。為了降低成本,或以實現輕薄短小的需求,電子構裝因此而發展出CSP的構裝方式。由於後段封裝製程的線路密集度更新速度遠比 PWB 快很多,為了提高電性功能,簡化封裝流程,降低成本以及真正實現晶片尺寸構裝 (chip size package) 的目標,晶圓級封裝方式乃隨著bumping的發展應運而生。
同樣由於前段晶圓製程的線路密集度更新速度遠比後段封裝快,使得晶圓表面的bump pad 尺寸愈來愈小,甚至小於錫球的製程能力,造成WLCSP產品的發展及應用受到限制。因此有別於一般晶圓級封裝(STD wafer level package) 的製程與結構,Infineon公司 Brunnbauer et. al. [1] 開發出使用塑膠封裝材料的擴張型晶圓封裝 eWLBTM (embedded wafer level ball grid array)。
由於高分子材料容易吸收濕氣,而吸濕後一些特性也會有些許改變。本論文主要就是以英飛凌eWLBTM製程及結構為基礎,探討溫、濕度 (30℃/60%RH、85℃/60%RH、85℃/85%RH) 對封膠晶圓半成品吸濕率及尺寸膨脹的影響。由實驗結果可以得知,封膠晶圓半成品的吸濕率及尺寸膨脹確實受到溫、濕度的影響,其中吸濕率受到溫、濕度的影響程度接近,符合 Non-Fickian 擴散模式,而尺寸膨脹同樣受到溫、濕度的影響,以濕度影響程度較大。最後由實驗結果求得擴散係數、活化能,吸濕率對時間的擬合方程式,並得到應變對時間的擬合方程式與濕度膨脹係數。
The electrical packaging methods follow the market requirement and technology trend. Therefore the consumer electronics progresses from P-DIP, PLCC, PQFP, through BGA, LBGA and VFBGA, to FCBGA that is packaged by flip chip structure. In order to meet the trend of the cost down or small/thin requirement, the CSP packaging was developed. Because of the trace width upgrading speed in back-end packaging is much faster than that of PWB, the WLCSP packaging was developed following bumping technology to meet the requirements of better electrical function, shorter assembling process flow and cost down issue.
For the same reason, the trace width upgrading speed in front-end packaging is much faster than that of back-end packaging, the bump pad pitch on WLCSP is getting smaller and smaller, and even smaller than the solder ball manufacturing capability. Thus, the development and application of WLCSP products are restricted. Infineon’s Brunnbauer et. al. [1] announced a new processes and structure compared to the standard wafer level package, namely the fan-out type eWLBTM (embedded wafer level ball grid array) reconfigurated by molding compound.
It is well known that the polymer is easy to sorb moisture, and some of the properties will be therefore changed more or less. This thesis is primarily based on the processes and structure of Infineon eWLBTM semi-product to discuss the moisture sorption and swelling impact at different temperature / humidity environments (30℃/60%RH, 85℃/60%RH, 85℃/85%RH). It is known from the experimental results that the moisture sorption and swelling are indeed involved by the environmental temperature and humidity. There are the closely impact to moisture sorption, the moisture sorption follows the Non-Fickian diffusion model, the humidity impact to swelling is more critical than that by temperature. Finally the moisture diffusion coefficient and the activation energy are found from this experiment, also the fitting equations of the time related moisture sorption rate and the time related strain, and the coefficient of moisture expansion.
[1] Brunnbauer M., Fürgut E., Beer G., Meyer T., Hedler H., Belonio J., Nomura E., Kiuchi K., Kobayashi K., “An Embedded Device Technology Based on a Molded Reconfigured Wafer”, 2006 Electronic Components and Technology Conference.
[2] Manzione Louis T., Plastic Packaging of Microelectronic Devices, Nostrand Reinhold, New York, 1990.
[3] Computer History Museum, http://www.computerhistory.org/semiconductor/timeline/1965-Package.html
[4] EE TIMES India, http://www.eetindia.co.in/ART_8800503826_1800005_NP_e5ad435c.HTM
[5] Shen Chi-Hung, Springer George S., “Moisture Absorption and Desorption of Composite Materials”, Journal of Composite Materials, vol. 10, pp2-10, 1976.
[6] Trigo J., “Dimensional Stability Caracterization of Carbon Fiber with Epoxy and Cyanate Ester Resins Laminates due to Moisture Absorption”, 1996 Proceeding Conference on Spacecraft Structures,Materials & Mechanical Testing.
[7] Jacobs P. M., Jones F. R., “Diffusion of Moisture into Two-Phase Polymers, Part 1 the Development of an Analytical Mode/and its Application to Styrene-Ethylene/Butylene-Styrene Block Copolymer”, Journal of Materials Science, vol.24, pp2331-2342, 1989.
[8] Jacobs P. M., Jones F. R., “Diffusion of Moisture into Two-Phase Polymers, Part 2 Styrenated Polyester Resins”, Journal of Materials Science, vol.24, pp2343-2348, 1989.
[9] Maggana C., Pissis P., “Water Sorption and Diffusion Studies in an Epoxy Resin System”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 37, pp1165–1182, 1999.
[10] Kontou E., Spathis G., Theocaris P. S., “The Heterogeneity of the Network Structure of Epoxy Polymers Studied by Dynamic and DSC Tests”, Journal of Polymer Science, Polymer Chemistry ed., vol. 23, pp1493-1503, 1985.
[11] Spathis G., Kontou E., Theocaris P. S., “Network-Structure of Plasticized Epoxy Resins by Dynamic Measurements”, Rheologica Acta, vol.24, No.1, pp63-68, 1985.
[12] Uschitsky M., Suhir E., “Moisture Diffusion in Epoxy Molding Compounds Filled with Particles”, Journal of Electronic Packaging, vol. 123, pp47-51, 2001.
[13] Ardebili Haleh, Hillman Craig, McCluskey Patrick, Pecht Michael G., “Moisture Diffusion in Plastic Encapsulated Microelectronics”, IEEE Transaction on Components and Packaging Technologies, vol. 25, No. 1, pp132-139, 2002.
[14] Carrascal I., Casado J.A., Polanco J.A., Gutie’rrez-Solana F., “Absorption and Diffusion of Humidity in Fiberglass-Reinforced Polyamide”, Polymer Composites, pp580-586, 2005.
[15] Chen Xu, Zhao Shufeng, Zhai Linda, “Moisture Absorption and Diffusion Characterization of Molding Compound”, Journal of Electronic Packaging, vol. 127, pp460-465, 2005
[16] Ma Xiaosong, Jansen K.M.B., Zhang G.Q., Ernst L.J., “Filler Contents Effects on the Moisture Absorption and Viscoelasticity of Thermosetting IC Packaging Polymers”, 2006 7th International Conference on Electronics Packaging Technology.
[17] 王玉果,“三維編織碳纖維增強環氧樹酯複合材料的吸濕特性”,天津大學學報, vol. 42, No.10, pp867-871, 2009.
[18] Galloway Jesse E., Miles Barry M., “Moisture Absorption and Desorption Predictions for Plastic Ball Grid Array Packages”, 1996 Intersociety Conference on Thermal Phenomena.
[19] Morgan Roger J., O'neal James Ames E., Fanter Dale L., ”The Effect of Moisture on the Physical and Mechanical Integrity of Epoxies”, Journal of Materials Science, vol. 15, pp751-764, 1980.
[20] Adamson Michael J., “Thermal Expansion and Swelling of Cured Epoxy Resin used in Graphite/Epoxy Composite Materials”, Journal of Materials Science, vol. 15, pp1736-1745, 1980.
[21] Ma Xiaosong, Jansen K.M.B., Ernst L.J., van Driel W.D., Sluis O. van der, Zhang G.Q., “Characterization of Moisture Properties of Polymers for IC Packaging”, Microelectronics Reliability, vol. 27, pp1685–1689, 2007.
[22] Gupta V. B., Drzal L. T., “The Physical Basis of Moisture Transport in a Cured Epoxy Resin System”, Journal of Applied Polymer Science, vol. 30, 4467-4493 1985.
[23] Yang F., Gilbert R. D., Fornes R. E., Memory J. D., “Factors Affecting H2O Absorption of the Epoxy Tetraglycidyl-4,4′-Diaminodiphenyl Methane Cured with Diaminodiphenyl Sulfone”, Journal of Polymer Science, Polymer Chemistry ed., vol. 24, issue 10, pp2609-2618, 1986.
[24] Vanlandingham M. R., Eduljee R. F., Gillespie JR. J. W., “Moisture Diffusion in Epoxy Systems”, Journal of Applied Polymer Science, vol. 71, pp787–798, 1999.
[25] Merdas I., Thominette F., Tcharkhtchi A., Verdu J., “Factors Governing Water Absorption by Composite Matrices”, Composites Science and Technology, vol. 62 pp487-492, 2002.
[26] Shimamura Yoshinobu, Urabe Takashi, Todoroki Akira, Kobayashi Hideo, “Measurement of Moisture Absorption Ratio of FRP using Micro Polymer Sensor”, Key Engineering Materials, vols. 270-273, pp. 1957-1964, 2004.
[27] Lin Y.C., Chen Xu, “Investigation of Moisture Diffusion in Epoxy System: Experiments and Molecular Dynamics Simulations”, Chemical Physics Letters, vol. 412, pp322–326, 2005.
[28] 垣內弘著,賴耿陽譯著,“化工製造用書-環氧樹酯應用實務 EPOXY RESINS,再刷版”,復漢出版社,台南市,民國82年。
[29] Chen R. S., Tu C. Y., Tsai H. S., ‘‘The Effects of Moisture upon the Optimal Temperature Path of the Viscoelastic Symmetric Composite Laminates after Post Cure’’, Journal of Composite Materials, 27, No. 16, pp. 1578–1596, 1993
[30] Roy S., Xu W. X., Park S. J., Liechti K. M., “Anomalous Moisture Diffusion in Viscoelastic Polymers: Modeling and Testing”, ASME Journal of Applied Mechanics, vol. 67, pp391-396, 2000.
[31] Wong E. H., Chen K. C., Lim T. B., and Lam T. F., “Non-Fickian Moisture Properties Characterization and Diffusion Modeling for Electronic Package”, IEEE Electronic Components and Technology Conference, pp302-306, 1999.
[32] Bhattacharyya B. K., Huffman W. A., Jahsman W. E., Natarajan B., “Moisture Absorption and Mechanical Performance of Surface Mountable Plastic Packages” in Proceedings of the 38th Electronics Components Conference, pp 49–58, 1988.
[33] Frémont H., Delétage J. Y., Pintus A., Danto Y., “Evaluation of the Moisture Sensitivity of Molding Compounds of IC’s Packages,” ASME Journal of Electronic Packaging, vol.123, pp. 407–412, 2001.
[34] Ferguson T., Qu J., “Moisture Absorption Analysis of Interfacial Fracture Test Specimens Composed of No-Flow Underfill Materials,” ASME Journal of Electronic Packaging, vol.125, pp. 24–30, 2003.
[35] Zhang G. Q., Tay A. A. O., Ernst L. J., Liu S., Qian Z. F., Bressers H. J. L., Janssen J., “Virtual Thermal-Mechanical Prototyping of Electronic Packaging-Challenges in Materials Characterization and Modeling” , in Proceeding of the 51st Electronic Components and Technology Conference, pp1479-1486, 2001.
[36] Roy S., “Modeling of Anomalous Diffusion in Polymer Matrix Composites: A Finite Element Approach,” Journal of Composite Materials, vol. 33, pp1318–1343, 1999.
[37] Wong E. H., Rajoo R., “Moisture Absorption and Diffusion in Characterization of Packaging Materials-Advanced Treatment”, Microelectronics Reliability, vol. 43, pp2087-2096, 2003.
[38] Frisch H. L., “Isothermal Diffusion in Systems with Glasslike Transitions”, Journal of Chemical Physics, vol. 41, pp. 3379–3683, 1964.