| 研究生: |
陳明德 Chen, Ming-Te |
|---|---|
| 論文名稱: |
過氧化氫鋁冰火箭藥柱性能分析:過氧化氫/水比例與奈米/微米鋁粉比例對退縮率之影響 A Study of H2O2 Aluminum-Ice Rocket Propellant Performance : The Influence of H2O2/H2O Ratio and Nano/Micro-Aluminum Powder Ratio |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 固態藥柱推進劑 、鋁粉/過氧化氫推進 、火箭推進劑 、過氧化氫 、奈米鋁粉 |
| 外文關鍵詞: | Solid Propellant Propulsion, Aluminium-Hydrogen Peroxide Propulsion, Rocket Propulsion, Hydrogen Peroxide, Nano-Aluminum |
| 相關次數: | 點閱:115 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用鋁與水反應做為推進系統已在先前廣泛應用於水底推進器,近年來,開始用其做為產氫反應,甚至新型火箭推進劑上。在實驗中,一般不同粒徑大小鋁粉,都會有不同程度比例的氧化層厚度,雖其可防止人員操作時發生爆炸,但此一氧化層會阻礙鋁粉氧化反應的進行;而在微米等級鋁粉中,氧化層厚度雖遠比奈米鋁粉厚,但優點為所含純鋁比例高,在氧化劑的擴散反應機制下,可以提供受保護的純鋁燃燒,以維持燃面穩定;另文獻提及,奈米鋁粉具有低燃點(約930 K)、較大的比燃燒面積,並因減少鋁粉間質傳尺度,燃燒時艙壓會較穩定,但其易造成鋁粉群聚、燒結及操作使用困難等缺點;而在氧化劑方面,由於水吸熱分解,再與部分純鋁反應釋出的熱量,不夠使剩餘鋁粉外氧化層融化或撕裂,但搭配實驗室發展的高濃度過氧化氫製備技術製備過氧化氫,可有效提供反應所需的高含量氧氣與熱,可以有效加速反應,降低點燃溫度與點火延遲時間(ignition delay),並且兼顧安全及綠色環保。本研究欲結合奈米/微米鋁粉及過氧化氫進行搭配,以提升反應速率及燃燒效率,另因水或過氧化氫分子帶有極性,與不帶極性鋁粉在溶液中會沉澱,因此藥柱製作時須搭以介面活性增稠劑,讓鋁粉有效分散於藥柱中。
本研究目的在調配不同等級的微米與奈米鋁粉,並規畫調整混以不同濃度的過氧化氫,改變以往用水與鋁粉之反應途徑,以改善整體性能效率與穩定性,減少鋁粉因燒結或未反應完全而造成的燃燒與推進效率損失,同時建置具燃燒觀測窗之高壓推進劑束燃燒器(high pressure strand burner),搭配使用Matlab影像偵測處理,分析拍攝之推進劑速燃燒圖像並轉換成火焰在推進劑中燃燒速率(burning rate)或推進劑退縮率(propellant regression rate)數值,同時改變不同艙壓條件,紀錄對應之退縮率、燃燒穩定度,分析其產物燒結情形,實驗結果(實際退縮率及產物結果)可顯示奈/微米鋁粉搭配過氧化氫,與單純使用微米鋁粉搭配過氧化氫上,前者在點火延遲時間縮短上有較高助益,但在燃燒後氧化鋁粉均勻度上,後者則較為平均。
Recently, the energetic reaction of aluminum and water finds renewed special applications in space/rocket propulsion and attracts extensive research interests. In experiments, different sized nano-/micron-aluminum particles tend to be coated with different thickness of oxidation layer due to natural oxidation with ambient air that may retard the reactivity of aluminium burning. However, oxidation layer may serve as a protection layer to prevent unexpected reactions when blending with oxidizers in the propellants. Different sized particles provide different reaction characteristics for combustion for high-efficiency propulsion with energetic oxidizers. Micron-aluminum particles provide high ratio of pure aluminum during continuous combustion with melting dispersion and diffusion mechanisms, while nano-aluminum particles with high reactivity may improve combustion performance due to its lower ignition temperature and lower ignition delay. Energetic oxidizers, such as hydrogen peroxide, are usually employed to enhance reaction and improve propulsion performance.
In this research, we focus on the effects of modifying the proportion of micron- and nano-aluminum powders to mix with different concentrations of energetic oxidizer of hydrogen peroxide in order to improve the overall propellant performance. The burning rate of the sample propellants of different micro-nano aluminum ratios with specific O/F is measured in the high pressure strand burner and the measurement data are analyzed by Matlab image processing. By different mixing proportions, the performance of propellant reaction efficiency and regression rate features can be obtained and can be optimized. The effects of nano-/micron-aluminium ratio with high concentration hydrogen peroxide are beneficial to ignition. The regression rates are r_b=0.7624∙P^0.9616 for the case of with nano-aluminum and r_b=0.0078∙P^2.2279 only using micron-aluminum powders respectively. The SEM and EDS scan of the oxidation product show that for the nano/micron case more nano and small particles rupture and burned into splashes of aggregated aluminum oxides and most micron particles are unburned or with minor cracks on the surface showing incomplete combustion of the larger particles, and on the other hand, for the pure micron case obvious holes and significant cracks are found on the surface of the particles signifying the burning of the inside pure aluminum from the large particles.
[1] T.L. Pourpoint, T.D. Wood, M.A. John Tsohas, S.F. Son, “Feasibility Study and Demonstration of an Aluminum and Ice Solid Propellant,” International Journal of Aerospace Engineering, 11 May 2012.
[2] G.A. Risha, T.L. Connell Jr., R.A. Yetter, Vigor Yang, T.D. Wood, M.A. Pfeil, T.L. Pourpoint, S.F. Son, “Aluminum-Ice (ALICE) Propellant for Hydrogen Generation and Propulsion,” AIAA, p. 4877, 2-5 August 2009.
[3] C.R. Zaseck, S.F. Son, T. L. Pourpoint, “Combustion of micron-aluminum and hydrogen peroxide propellants,” Combustion and Flame, Vol 160, pp. 184-190, 2013.
[4] A.K. Narayana, E. Shafirovich, “Conversion of aluminum foil to powders that react and burn with water,” Combustion and Flame, Vol 161, pp. 322-331, January 2014.
[5] S.S. Razavi-Tousi, J.A. Szpunar, “Effect of structural evolution of aluminum powder during ball milling on hydrogen generation in aluminum-water reaction,” International Journal of Hydrogen Energy, Vol 38, pp. 795-806, 2013.
[6] Yang Yang, W.Z. Gai, Z.Y. Deng, J.G. Zhou, “Hydrogen generation by the reaction of Al with water promoted by an ultrasonically prepared Al(OH)3 suspension,” International Journal of Hydrogen Energy, Vol 39, pp. 18734-18742, 2014.
[7] D.S. Sundaram, Vigor Yang, Y. Huang, G.A. Risha, R.A. Yetter, “Effects of particle size and pressure on combustion of nano-aluminum particles and liquid water,” Combustion and Flame, Vol 160, pp. 2251-2259, 2013.
[8] W.U. Jiajun, Y. Wang , J. Zhang , “Evaluation of the Dispersion Behavior of Nanopowder in Organic Liquids”.
[9] Z.X. Yan, J. Deng, Z.M. Luo, “A comparison study of the agglomeration mechanism of nano- and micrometer aluminum particles,” Materials Characterization, Vol 61, pp. 198-205, 2010.
[10] T.R. Sippel, S.F. Son, L. J. Groven, “Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles,” Combustion and Flame,Vol 161, pp. 311-321, 2014.
[11] P. Chakraborty, M.R. Zachariah, “Do nanoenergetic particles remain nano-sized during combustion?,” Combustion and Flame, Vol 161, pp. 1408-1416, 2014.
[12] H. Nie, S. Zhang, M. Schoenitz, E.L. Dreizin, “Reaction interface between aluminum and water,” International Journal of Hydrogen Energy, Vol 38, pp. 11222-11232, 2013.
[13] K.W. Watson, M.L. Pantoya, V.I. Levitas, “Fast reaction with nano- and micrometer aluminum: A study on oxidation versus fluorination,” Combustion and Flame, Vol 155, pp. 619-634, 2008.
[14] 高濂、孫靜、劉陽橋, 奈米粉體的分散及表面改性, 五南出版社, 2005.
[15] D.S. Sundaram, Vigor Yang, T.L. Connell Jr, G.A. Risha, R.A. Yetter, “Combustion of Aluminum, Aluminum Hydride, and Ice Mixtures,” AIAA, 4-7 January 2011.
[16] T.R. Sippel, S.F. Son, G.A. Risha, and R.A. Yetter, “Combustion and characterization of nanoscale aluminum and ice propellants,” AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2008.
[17] J.L. Sabourin, G.A. Risha, R.A. Yetter, S.F. Son, B.C. Tappan, “Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures,” Combustion and Flame, Vol 154, pp. 587-600, , July 2008.
[18] D.S. Sundaram, Vigor Yang, “Combustion of micron-sized aluminum particle, liquid water, and hydrogen peroxide mixtures,” Combustion and Flame, Vol 161, pp. 2469-2478, September 2014.
[19] M.A. Trunov, M. Schoenitz, X. Zhu, E.L. Dreizin, “Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders,” Combustion and Flame, Vol 140, pp. 310-318, 2005.
[20] 蔡明璁, “Observation on the flame behavior for methane hydrate synthesized by ice seed method,” 國立成功大學航空太空工程學系碩士論文, 2014.
[21] 陳建安, “Development of Catalytic Hydrogen Peroxide Bipropellant Engine,” 國立成功大學航空太空工程學系碩士論文, 2004.
[22] A.M. Starik, P.S. Kuleshov, A.S. Sharipov, N.S. Titova, C.J. Tsai, “Numerical analysis of nanoaluminum combustion in steam,” Combustion and Flame, Vol 161, pp. 1659-1667, 2014.
[23] D.S. Sundaram, Vigor Yang, T.L. Connell Jr., G.A. Risha, R.A. Yetter, “Flame propagation of nano/micron-sized aluminum particles and ice (ALICE) mixtures,” Proceedings of the Combustion Institute, Vol 34, pp. 2221-2228, 2013.
[24] A. Davis, “Solid Propellants: The Combustion of Particles of Metal Ingredients,” Combustion and Flame, Vol 7, pp. 359-367, 1963.
[25] B. M.W., “A Summary of Aluminum Combustion,” RTO-EN-023, 2004.
[26] M. Versluis, A.J. Landman, Th.H. van der Meer, D. Roekaerts, “COMBUSTION OF HYDRAZINIUM NITROFORMATE BASED COMPOSITIONS,” AIAA, 1998.
[27] A. Aziz, R. Mamat, W.K. Wan Ali, “Development of strand burner for solid propellant burning rate studies,” 2nd International Conference on Mechanical Engineering Research, 2013.
[28] C.K. Kung, Indigenous Technology Development of an Advanced 100mN HTP Monopropellant Microthruster, 國立成功大學航空太空工程學系碩博士班, 2006.
校內:2020-08-28公開