簡易檢索 / 詳目顯示

研究生: 王立為
Wang, Li-Wei
論文名稱: 應用奈米碳管及電解質網印製程來增進染料敏化太陽能電池的效能
Performance Enhancements of Dye-Sensitized Solar Cells by Application of Carbon Nanotubes and Screen Printing Process of Electrolytes
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 115
中文關鍵詞: 網印式電解質雙層電解質奈米碳管多碘離子
外文關鍵詞: screen-printing electrolyte, double layer electrolyte, carbon nanotube, polyiodine
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部份,分別為網印式電解質的開發與奈米碳管(CNT)作為電解質處理劑於染料敏化太陽能電池(DSSC)之應用。在網印式電解質的製備上,首先使用聚乙二醇(PEO)作為增稠劑,藉由PEO濃度的控制以達到良好的塗佈行為。接著,利用氧化鋅(ZnO)與二氧化鈦(TiO2)奈米粒子作為電解質添加劑,探討此兩種奈米粒子對元件特性的影響。實驗結果顯示ZnO的使用會影響導帶能階位置,產生更大的元件開路電壓,而TiO2則可降低電荷在對電極/電解質界面上的轉移阻力。最後基於網印製程的使用,本研究將含有ZnO與TiO2奈米粒子添加的電解質分別印製於光電極與對電極上,組裝成具雙層電解質結構的DSSC元件,希望能取得此二種奈米粒子的優點。相較於未使用奈米粒子之元件,此雙層結構可使DSSC之開路電壓由0.744 V提升至0.808 V,同時光電轉換效率可由8.19%提高至8.53%。
    在第二部份,CNT是作為電解質之添加劑或處理劑。因CNT添加於一般膠態電解質時,有分散不易的問題,所以本研究中將CNT作為液態電解質處理劑。實驗結果發現,液態電解質經5 wt.% CNT處理之後,可使DSSC之開路電壓由0.753 V升高至0.792 V,而光電轉換效率則由8.26%提升至9.18%。進一步以紫外光-可見光吸收光譜與拉曼光譜分析後可得知,電解質經過CNT處理之後,三碘及多碘陰離子之含量會有所降低,因此位於光電極/電解質界面的電荷再結合反應較不易發生,進而改善元件的效能。

    There are two different topics in this study. The first is estabilishment of screen-printing electrolyte, and the second is applying carbon nanotube (CNT) as the additive agent and treating agent of electrolyte.
    For the estabilishment of screen-printing electrolyte, PEO was added into electrolyte to prepare printable electrolyte and controlled the amount of PEO to adjust viscosity of electrolyte. Then two kinds of nano-fillers were induced. ZnO in the electrolyte would make the counduction of photo electrode shift negatively to increase Voc. TiO2 in the electrolyte would decrease resistance bwtween counter electrode and electrolyte to increase Jsc. Due to screen printing process of electrolyte, make electrolyte containing ZnO and TiO2 printed on photo electrolyte and counter electrode respectively to prepare DSSC with double layer electrolyte. By combining both of their advantages, double layer electrolyte could enhance Voc up to 0.808V leading to a higher efficiency of 8.53%.
    In the second topic, CNT was used as additive agent and treating agnet of electrolyte.
    To solve the problem of poor dispersion in printable electrolyte, CNT applied as treating agnet for liquid-state electrolyte. Utilizing electrolyte which was treated by 5 wt%. CNT could induce higher voltage of 0.792V and higher efficiency of 9.18%. In UV-vis and Raman analysis, it shows that concentration of triiodine and polyiodine would decrease by the treatment of CNT. it would make the resistance between photo electrode and electrolyte to enhance the performance of DSSC.

    摘要 I Extended abstract II 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1前言 1 1-2 研究目的與動機 3 第二章 實驗原理與文獻回顧 5 2-1 染料敏化太陽能電池介紹 5 2-1-1 工作原理 5 2-1-2 電子在DSSC上的傳輸路徑 7 2-2 染料敏化太陽能電池之結構介紹 9 2-2-1 導電基板 10 2-2-2 氧化物半導體 11 2-2-3 光敏化劑 13 2-2-4 電解質 20 2-2-5 對電極 24 2-3 文獻回顧 26 2-3-1 膠態電解質 26 2-3-2 可印刷式電解質 28 2-3-3 奈米粒子於電解質之應用 29 2-3-4奈米粒子作為電解質處理劑 31 2-3-5 CNT於電池中之應用 32 2-3-6 染料敏化太陽能模組 33 第三章 實驗器材與步驟 36 3-1藥品與材料 36 3-2 儀器原理與分析 39 3-2-1 太陽光模擬器 39 3-2-2 電化學交流阻抗分析 43 3-2-3 金屬濺鍍機 49 3-2-4 動態流變儀 50 3-2-5 紫外光-可見光光譜儀 50 3-2-6 傅立葉轉換紅外線光譜儀 51 3-2-7 拉曼光譜儀 52 3-2-8 穿透式電子顯微鏡 53 3-2-9 一般儀器 54 3-3 實驗流程及實驗原理 57 3-3-1 二氧化鈦薄膜製備 57 3-3-2 光電極敏化程序 58 3-3-3 對電極製備程序 58 3-3-4 電解質製備程序 59 3-3-5 染料敏化太陽能電池元件組裝 60 3-3-6 染料敏化太陽能模組元件之組裝 63 第四章 結果與討論 68 4-1 網印式製程之開發與應用 68 4-1-1 印刷式電解質之流變行為 68 4-1-2 不同電解質組裝方式於DSSC光電轉換效能之比較 70 4-1-3 不同電解質組裝方式於DSSC元件之阻抗分析 71 4-1-4 TiO2和ZnO奈米粒子添加劑於DSSC光電轉換效能之比較 74 4-1-5 不同奈米粒子於電解質之電化學特性與DSSC元件之阻抗分析 75 4-1-6 雙層電解質結構於DSSC元件之應用 78 4-1-7 雙層電解質DSSC元件之阻抗分析 80 4-2 奈米碳管於DSSC之應用 83 4-2-1 不同碳材作為電解質添加劑於DSSC效能之影響 83 4-2-2 CNT表面特徵與結構之分析 84 4-2-3 CNT作為印刷式電解質添加劑於DSSC元件效能之影響 88 4-2-4 CNT作為液態電解質處理劑於DSSC元件效能之影響 92 4-2-5 CNT處理劑於電解質特性之分析 97 4-2-6 元件穩定性測試 100 4-2-7 模組電池之應用 101 第五章 結論與建議 103 5-1 結論 103 5-2 未來工作與建議 106 第六章 參考文獻 108 表3-1模組元件之相關參數 63 表4-1不同電解質由刮刀塗佈與網印法所組裝電池元件之光電轉換參數 70 表4-2以灌注式、刮刀塗佈法、及網印法組裝DSSC元件光電轉換參數 71 表4-3使用TiO2和ZnO奈米粒子添加劑之DSSC的光電轉換參數 74 表4-4使用TiO2和ZnO奈米粒子添加劑之印刷式電解質的電化學特性 75 表4-5雙層電解質結構之DSSC元件的光電轉換參數(使用PEO增稠劑) 79 表4-6雙層電解質結構之DSSC元件的光電轉換參數(使用PEO/PMMA增稠劑) 80 表4-7使用不同碳材添加劑之DSSC元件的光電轉換參數 84 表4-8以CNT添加劑所製備DSSC元件的光電轉換參數 88 表4-9含有CNT添加劑之印刷式電解質的電化學特性 89 表4-10以不同CNT處理劑所製備DSSC元件之之光電轉換參數 93 表4-11以不同CNT處理劑所配製電解質的電化學特性 93 表4-12實驗室小電池與模組元件之光電轉換參數 102 圖2-1染料敏化太陽能電池之工作原理 7 圖2-2電子在染料敏化太陽能電池中的傳輸路徑示意圖 8 圖2-3染料敏化太陽能電池中的電子傳輸動力學 9 圖2-4染料敏化太陽能電池之結構示意圖 9 圖2-5各種半導體的導帶與價帶能階位置圖[10] 11 圖2-6有機釕金屬錯合物染料結構圖:(a) N3、(b) Black dye、(c) N719、(d) Z907、(e) CYC-B11、(f) C106 16 圖2-7紫質有機金屬染料結構圖:(a) YD-2、(b) YD2-o-C8、(c) SM315 17 圖2-8純有機染料分子結構圖:(a) Y123、(b) D149、(c) C205、 19 圖2-9離子液體結構圖:(a) DMPII、(b) DMII、(c) PMII 22 圖2-10添加劑分子結構圖:(a) tBP、(b) NMBI、(c) GuSCN 23 圖2-11 (a) N3染料、I-/I3-及[Co(bpy)3]2+/3+的吸收圖譜,(b)鈷錯合物搭配不同配位基時的氧化還原電位 23 圖2-12 PEDOT結構圖 25 圖2-13高分子結構圖:(a) PAN、(b) PVDF-HFP、(c) PAN-VA 27 圖2-14 TiO2奈米粒子作為電解質處理劑之機制 31 圖3-1太陽光模擬器 40 圖3-2太陽光以不同入射角度通過大氣層之示意圖 40 圖3-3 AM 0與AM 1.5之太陽光光譜 41 圖3-4太陽能電池電流/電壓輸出特徵曲線圖 42 圖3-5電化學交流阻抗分析儀 43 圖3-6 Dummy cell結構示意圖 44 圖3-7 Dummy cell之Nyquist diagram與等效電路圖 44 圖3-8電解質進行極限電流分析之電流-電壓曲線圖 46 圖3-9 DSSC之Nyquist diagram與等效電路圖 47 圖3-10金屬濺鍍機裝置 49 圖3-11流變儀 50 圖3-12紫外光-可見光光譜儀 51 圖3-13以灌注方式組裝DSSC之流程圖 61 圖3-14以刮刀塗佈法組裝DSSC之流程圖 62 圖3-15以網印方式組裝DSSC之流程圖 63 圖3-16模組元件之光電極圖形 63 圖3-17灌注式染料敏化太陽能模組元件之組裝流程 67 圖4-1以不同PEO膠化劑添加量所得電解質之流變行為 69 圖4-2 DSSC運作時之電子再結合路徑示意圖 72 圖4-3以不同電解質組裝方式所得元件之電容對施加偏壓關係圖 73 圖4-4以不同電解質組裝方式所得元件之再結合阻力對電壓關係 73 圖4-5使用TiO2和ZnO奈米粒子所得元件之電容對施加偏壓關係圖 77 圖4-6使用TiO2和ZnO奈米粒子所得元件之再結合阻力對電壓關係圖 77 圖4-7具有雙層電解質結構之DSSC元件示意圖 78 圖4-8雙層電解質結構之DSSC元件的電容對施加偏壓關係圖 82 圖4-9雙層電解質結構之DSSC元件的再結合阻力對電壓關係圖 82 圖4-10 CNT之傅立葉轉換紅外線光譜圖 86 圖4-11 CNT之拉曼光譜圖 86 圖4-12 CNT之TEM影像(左圖放大倍率為40k,右圖為80k) 87 圖4-13 CNT之TEM影像(放大倍率為300k) 87 圖4-14以CNT添加劑所製備DSSC元件的電容對施加偏壓關係圖 90 圖4-15以CNT添加劑所製備DSSC元件的再結合阻力對電壓關係圖 91 圖4-16以CNT添加劑所製備DSSC元件的電子密度對電子壽命關係圖 91 圖4-17以CNT處理劑所製備DSSC元件的電容對施加偏壓關係圖 94 圖4-18以CNT處理劑所製備DSSC元件的再結合阻力對電壓關係圖 95 圖4-19以CNT處理劑所製備DSSC元件的電子密度對電子壽命關係圖 95 圖4-20以CNT處理劑所製備DSSC元件的暗電流分析結果 96 圖4-21電解液經CNT處理後的Raman光譜圖 98 圖4-22電解液經CNT處理後的IM-/ I3-比值計算結果 98 圖4-23電解液經CNT處理後的UV-Vis吸收光譜圖 99 圖4-24應用CNT之DSSC元件在室溫環境下的穩定性測試 100 圖4-25陣列式模組元件 101

    [1] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell," Nature, 261, 402-403 (1976).
    [2] B. O’Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, 353, 737-739 (1991).
    [3] A. Pandikumar, S.-P. Lim, S. Jayabal, N. M. Huang, H. N. Lim, and R. Ramaraj, "Titania@gold plasmonic nanoarchitectures: An ideal photoanode for dye-sensitized solar cells," Renew. Sust. Energ. Rev., 60, 408-420 (2016).
    [4] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," J. Photochem. Photobiol. A-Chem., 164(1-3), 3-14 (2004).
    [5] M. Grätzel, "Solar energy conversion by dye-sensitized photovoltaic cells," Inorg. Chem., 44, 6841-6851 (2005).
    [6] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-sensitized solar cells," Chem. Rev., 110, 6595-6663 (2010).
    [7] Y.-Y. Kuo and C.-H. Chien, "Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells," Electrochim. Acta, 91, 337-343 (2013).
    [8] H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells," J. Photochem. Photobiol. A-Chem., 213(1), 30-36 (2010).
    [9] S. Ito, N. C. Ha, G. Rothenberger., P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin, and M. Grätzel, "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chem. Commun., 38, 4004-4006 (2006).
    [10] M. Grätzel, "Photoelectrochemical cells.," Nature, 414, 338-344, (2001).
    [11] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, "Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications," Nano Lett., 8, 3781-3786 (2008).
    [12] J. Jiu, S. Isoda, F. Wang, and M. Adachi, "Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film," J. Phys. Chem. B, 110, 2087-2092 (2006).
    [14] A. Hagfeldt and M. Grätzel, "Molecular photovoltaics," Acc. Chem. Res., 33(5), 269-277 (2000).
    [15] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel, "Conversion of light to electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes," J. Am. Chem. Soc., 115, 6382-6390, (1993).
    [16] M. K. Nazeeruddin, P. Péchy, and M. Grätzel, "Efficient Panchromatic Sensitization of Nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex," Chem Commun., 18, 1705-1706 (1997).
    [17] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," J. Am. Chem. Soc., 127, 16835-16847 (2005).
    [18] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, "A high molar extinction coefficient sensitizer for stable dye-Sensitized solar cells," J. Am. Chem. Soc., 127, 808-809 (2004).
    [19] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells," ACS nano, 3, 3103-3109 (2009).
    [20] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, "High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states," ACS nano, 4, 6032-6038 (2010).
    [21] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, W. G. Diau, and M. Grätzel, "Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins," Angew. Chem. Int. Ed., 49, 6646-6649 (2010).
    [22] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Nazeeruddin, W. G. Diau, C. Y. Yeh, S. M Zakeeruddin, M. Grätzel, "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency," science, 334(6056), 629-634 (2011).
    [23] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. Nazeeruddin, and M. Grätzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nature Chem., 6, 242-247 (2014).
    [24] S. Ito, S. M. Zakeeruddin, R. Humphry‐Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, "High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode Tthickness," Adv. Mater., 18, 1202-1205 (2006).
    [25] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchyb, and M. Grätzelb, "High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye," Chem Commun., 41, 5194-5196 (2008).
    [26] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang*, "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary pi-conjugated spacer," Chem Commun., 16, 2198-2200 (2009).
    [27] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, "Efficient Dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks," Chem. Mater., 22, 1915-1925 (2010).
    [28] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chem Commun., 51, 15894-15897 (2015).
    [29] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Sol. Energy Mater. Sol. Cells, 70(1), 85-101 (2001).
    [30] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): the case of solar cells using the I-/ I3-redox couple," J. Phys. Chem. B, 109, 3480-3487 (2005).
    [31] R. Harikisun, and H. Desilvestro, "Long-term stability of dye solar cells," Solar Energy, 85, 1179-1188 (2011).
    [32] P. Balraju, P. Suresh, M. Kumar, M. S. Roy, and G. D. Sharma, "Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye," J. Photochem. Photobiol. A-Chem., 206, 53-63 (2009).
    [33] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, "Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells," Nano lett., 2(11), 1259-1261 (2002).
    [34] H. Greijer Agrell, J. Lindgren, and A. Hagfeldt, "Coordinative interactions in a dye-sensitized solar cell," J. Photochem. Photobiol. A-Chem., 164(1-3), 23-27 (2004).
    [35] T. W. Hamann, "The end of iodide? Cobalt complex redox shuttles in DSSCs," Dalton Trans., 41(11), 3111-3115 (2012).
    [36] S. M. Feldt, G. Wang, G. Boschloo, and A. Hagfeldt, "Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples," J. Phys. Chem. C, 115, 21500-21507 (2011).
    [37] Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, and C. F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochem. Commun., 12, 1662-1665 (2010).
    [38] L. L. Li, C. W. Chang, H. H. Wu, J. W. Shiu, P. T. Wu, and W. E. Diau, "Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells," J. Mater. Chem., 22(13), 6267-6273 (2012).
    [39] E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I2," Sol. Energy Mater. Sol. Cells, 63, 267-273 (2000).
    [40] T. N. Murakami, S. Ito, Q. Wang, M. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzelz, "Highly efficient dye-sensitized solar cells based on carbon black counter electrodes," J. Electrochem. Soc., 153(12), A2255-A2261 (2006).
    [41] K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin, and K. C. Ho, "A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode," J. Mater. Chem., 20, 4067-4073, 2010.
    [42] L. Kavan, J. H. Yum, and M. Grätzel, "Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets," Acs Nano, 5, 165-172, 2010.
    [43] J. M. Pringle, V. Armel, and D. R. MacFarlane, "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells," Chem. Commun., 46, 5367-5369, 2010.
    [44] F. Cao, G. Oskam, and P. C. Searson, "A solid state, dye sensitized photoelectrochemical cell," J. Phys. Chem., 99, 17071-17073 (1995).
    [45] P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel, "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte," Chem. Commun., 24, 2972-2973 (2002).
    [46] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nature Mater., 2(6), 402-407 (2003).
    [47] C. L. Chen, H. Teng, and Y. L. Lee, "Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate)," J. Mater. Chem., 21, 628-632 (2011).
    [48] C. L. Chen, H. Teng, and Y. L. Lee, "In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells," Adv. Mater., 23(36), 4199-4204 (2011).
    [49] C. L. Chen, T. W. Chang, H. Teng, C. G. Wu, C. Y. Chen, Y. M. Yang, and Y. L. Lee, "Highly efficient gel-state dye-sensitized solar cells prepared using poly(acrylonitrile-co-vinyl acetate) based polymer electrolytes," Phys. Chem. Chem. Phys., 15, 3640-3645 (2013).
    [50] R. X. Dong, S. Y. Shen, H. W. Chen, C. C. Wang, P. T. Shih, C. T. Liu, J. J. Lin, and K. C. Ho, "A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells," J. Mater. Chem. A, 1, 8471-8478 (2013).
    [51] C. Wang, L. Wang, Y. Shi, H. Zhang, and T. Ma, "Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells," Electrochim. Acta, 91, 302-306 (2013).
    [52] S. J. Seo, H. J. Cha, Y. S. Kang, and M. S. Kang, "Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells," Electrochim. Acta, 145, 217-223 (2014).
    [53] T. C. Wei, H. H. Chen, Y. H. Chang, and S. P. Feng, "Hydrophobic electrolyte pastes for highly durable dye-sensitized solar cells," J. Electrochem. Soc., 161(4), H214-H219 (2014).
    [54] S. Venkatesan, S. C. Su, W. N. Hung, I. P. Liu, H. Teng, and Y. L. Lee, "Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application," J. Power Sources, 298, 385-390 (2015).
    [55] I. P. Liu, W. N. Hung, H. Teng, S. Venkatesan, J. C. Lin, and Y. L. Lee, "High-performance printable electrolytes for dye-sensitized solar cells," J. Mater. Chem. A, 5, 9190-9197 (2017).
    [56] S. Venkatesan, I. P. Liu, J. C. Lin, M. H. Tsai, H. Teng, and Y. L. Lee, "Highly efficient quasi-solid-state dye-sensitized solar cells using polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA)-based printable electrolytes," J. Mater. Chem. A, 6, 10085-10094 (2018).
    [57] M. S. Kang, K. S. Ahn, and J.W. Lee, "Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes," J. Power Sources, 180, 896-901 (2008).
    [58] X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, and Y. Y. Xia, "A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte," J. Power Sources, 160, 1451-1455 (2006).
    [59] S. Venkatesan, and Y. L. Lee, "Nanofillers in the electrolytes of dye-sensitized solar cells – A short review," Coord. Chem. Rev., 353, 58-112 (2017).
    [60] I. P. Liu, L. W. Wang, M. H. Tsai, Y. Y. Chen, H. Teng, and Y. L Lee, "A new mechanism for interpreting the effect of TiO2 nanofillers in quasi-solid-state dye-sensitized solar cells," J. Power Sources, 433, 226693 (2019).
    [61] S. Iijima, "Helical microtubules of graphitic carbon," Nature, 354, 56-58 (1991).
    [62] M. N. Lu, C. S. Dai, S. Y. Tai, T. W. Lin, and J. Y. Lin, "Hierarchical nickel sulfide/carbon nanotube nanocomposite as a catalytic material toward triiodine reduction in dye-sensitized solar cells," J. Power Sources, 270, 499-505 (2014).
    [63] A. M. Bakhshayesh, M. R. Mohammadi, N. Masihi, and M. H. Akhlaghi, "Improved electron transportation of dye-sensitized solar cells using uniform mixed CNTs–TiO2 photoanode prepared by a new polymeric gel process," J. Nanopart. Res., 15, 1961 (2013).
    [64] J. E. Benedetti, A. A. Corrêa, M. Carmello, L. C. P. Almeida, A. S. Goncalves, and A. F. Nogueira," Cross-linked gel polymer electrolyte containing multi-wall carbon nanotubes for application in dye-sensitized solar cells," J. Power Sources, 208, 263-270 (2012).
    [65] H. Arakawa et al., "Efficient dye-sensitized solar cell sub-modules,"Curr. Appl. Phys., 10(2), S157-S160 (2010).
    [66] Y. Liu, H. Wang, H. Shen, and W. Chen, "The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates," Appl. Energy, 87, 436-441 (2010).
    [67] W. J. Lee, E. Ramasamy, and D. Y. Lee, "Effct of electrode geometry on the photovoltaic performance of dye-sensitized solar cells," Sol. Energy Mater. Sol. Cells, 93, 1448-1451 (2009).
    [68] Y. D. Zhang, X. M. Huang, K. Y. Gao, Y. Y. Yang, Y. H. Luo, D. M. Li, and Q. B. Meng, "How to design dye-sensitized solar cell modules," Sol. Energy Mater. Sol. Cells, 95, 2564-2569 (2011).
    [69] T. C. Wei, Y. H. Chang, S. P. Feng, and H. H. Chen, "A semi-experimental method for fast evaluation of the performance of grid-type dye-sensitized solar module," Int. J. Electrochem. Sci., 8, 9256-9263 (2013).
    [70] X. Huang, Y. Zhang, H. Sun, D. Li, Y. Luo, and Q. Meng, "A new figure of merit for qualifying the fluorine-doped tin oxide glass used in dye-sensitized solar cells," Renew. Sust. Energ. Rev., 1, 063107 (2009).
    [71] R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner, and W. Hoffmann, "New interdigital design for large area dye solar modules using a lead-free glass frit sealing," Prog. Photovolt: Res. Appl., 14, 697-709 (2006).
    [72] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, "Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module," in Technical Digest, 21st International Photovoltaic Science and Engineering Conference, pp. 2C-5O (2011).
    [73] A. Hauch, and A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochim. Acta, 46, 3457-3466 (2001).
    [74] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, " Quasi-solid-state dye-sensitized TiO2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, " J. Phys. Chem. B, 105, 12809-12815 (2001).
    [75] J. E. Benedetti, A. D. Gonçalves, A. L. B. Formiga, M.-A. De Paoli, X. Li, J. R. Durrant and A. F. Nogueira, "A polymer gel electrolyte composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells, " J. Power Sources, 195, 1246-1255 (2010).
    [76] Z. Kebede, and S. E. Lindquist, "Donor–acceptor interaction between non-aqueous solvents and I2 to generate I3-, and its implication in dye sensitized solar cells," Sol. Energy Mater. Sol. Cells, 57, 259–275 (1999).
    [77] L. Grigorian, K. A. Williams, S. Fang, G. U. Sumanasekera, A. L. Loper, E. C. Dickey, S. J. Pennycook, and P. C. Eklund, "Reversible Intercalation of Charged Iodine Chains into Carbon Nanotube Ropes," Phys. Rev. Lett., 80(25), 5560-5563 (1998).
    [78] X. Fan, E. C. Dickey, P. C. Eklund, K. A. Williams, L. Grigorian, R. Buczko, S. T. Pantelides, and S. J. Pennycook, "Atomic Arrangement of Iodine Atoms inside Single-Walled Carbon Nanotubes," Phys. Rev. Lett., 84, 4621-4624 (2000).

    下載圖示 校內:2024-07-10公開
    校外:2024-07-10公開
    QR CODE