簡易檢索 / 詳目顯示

研究生: 林奕名
Lin, Yi-Ming
論文名稱: 極紫外光干涉微影 – 奈米壓印應用於穿透式光柵製作
Extreme ultraviolet interferometric lithography - fabrication of transmission grating by using nanoimprint lithography
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 81
中文關鍵詞: 極紫外光穿透式繞射光柵奈米壓印電子束微影
外文關鍵詞: extreme ultraviolet (EUV), transmission grating, nano-imprint, electron beam lithography
相關次數: 點閱:99下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在極紫外光干涉式微影中,為了製作出奈米等級的穿透式繞射光柵(Transmission Grating),使用電子束微影(Electron Beam Lithography, EBL)製作是必要的。但其定義光柵圖形的速度緩慢,並不能有效率的製作穿透式繞射光柵。在本研究中,使用熱壓成型奈米壓印技術(Hot Embossing Nano-Imprint Lithography, HE-NIL)於製作穿透式繞射光柵,對於快速製作小線寬光柵結構有很大的幫助。在研究方法上,一部分改良了電子束微影的製程,另一部份則是搭配熱壓成型奈米壓印技術,藉以定義穿透式繞射光柵之結構。這個方法可達到快速複製和降低成本的目的,並成功製作出週期300 nm的SU8光柵結構。在實驗中,極紫外光光源由國家同步輻射研究中心(National Synchrotron Radiation Research Center, NSRRC)提供,其純淨、高準直性的輻射光為穩定的光束來源,搭配穿透式繞射光柵的干涉實驗,利用電子束微影製作的光柵目前可定義出75 nm週期的干涉條紋(interference fringes);而使用奈米壓印製作之光柵可定義150 nm週期的干涉條紋。

    In the experiment of extreme UV intereferometric lithography (EUV-IL), electron beam(E-beam) lithography is the commonly used tool for fabrication of the transmission diffraction grating. However, the throughput of E-beam lithography too slow. Therefore, we proposed the use of hot embossing nano-imprint lithography to improve the fabrication efficiency of the transmission grating and to reduce the huge cost from E-beam lithography. The proposed approach significantly simplifies the fabrication process. This process is further simplified by chromium evaporation instead of lift-off process. We have fabricated 300-nm pitch transmission diffraction grating by using nano-imprint lithography and presented the EUV-IL exposure results using the EUV-IL exposure system at the National Synchrotron Radiation Research Center. We have successfully recorded 75-nm pitch line/space pattern on the PMMA resist with a thickness of 50 nm directly from a 300-nm pitch transmission grating using the EUV light source.

    摘要 I Abstract II 誌謝 III 目次 IV 表次 VII 圖次 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 穿透式繞射光柵 3 2.1 文獻回顧 3 2.2 穿透式繞射光柵的製造 4 2.3穿透式繞射光柵的製程最佳化 7 2.3.1 光柵圖案 8 2.3.2 阻擋層 10 2.3.3 背向窗口蝕刻 13 2.4 實驗結果 15 2.5 結論 18 第三章 電子束微影 19 3.1 文獻回顧 19 3.2 機台與原理介紹 19 3.2.1 LEICA WEPRINT200 E-beam stepper 19 3.2.2 工作原理 20 3.2.3 電子束鄰近效應 22 3.3 電子束微影實驗 24 3.3.1 負光阻HSQ 24 3.3.2 正光阻PMMA 31 3.4 結論 37 第四章 奈米壓印微影 38 4.1 文獻回顧 38 4.2 機台介紹 39 4.3 實驗模仁製備 40 4.3.1 母模製備 40 4.3.2 軟模製備 44 4.4 熱壓成型奈米壓印實驗 45 4.4.1 阻劑PMMA 45 4.4.2 阻劑SU8 48 4.5 結論 52 第五章 極紫外光干涉式微影 54 5.1 文獻回顧 54 5.2 光源與機台介紹 56 5.2.1 光源介紹 56 5.2.2 曝光平台介紹 59 5.3 極紫外光干涉實驗 61 5.3.1 波的疊加 61 5.3.2 部份同調 63 5.3.3 繞射效率 65 5.3.4 工作距離 67 5.3.5 實驗流程 69 5.4 實驗結果 70 5.5 結論 75 第六章 實驗總結與展望 77 6.1 實驗總結 77 6.2 未來展望 78 參考文獻 79

    1. M. Goldstein, R. Hudyma, P. Naulleau, and S. Wurm, "Extreme-ultraviolet microexposure tool at 0.5 NA for sub-16 nm lithography," Optics Letters 33, 2995-2997 (2008).
    2. C. Constancias, B. Dalzotto, P. Michallon, J. Wallace, and M. Saib, "Fabrication of large area ultrathin silicon membrane: Application for high efficiency extreme ultraviolet diffraction gratings," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 28, 194-197 (2010).
    3. J. Ma, X. Zhu, W. Zhu, C. Xie, T. Ye, and P. Shi, "Fabrication of transmission gratings for extreme ultraviolet interference lithography," Proc. SPIE 7133, 713336 (2008).
    4. Y. Yamaguchi, Y. Fukushima, T. Iguchi, H. Kinoshita, T. Harada, and T. Watanabe, "Fabrication Process of EUV-IL Transmission Grating," J. Photopolym Sci. Technol. 23, 681-686 (2010).
    5. M. Capeluto, P. Wachulak, M. Marconi, D. Patel, C. Menoni, J. Rocca, C. Iemmi, E. Anderson, W. Chao, and D. Attwood, "Table top nanopatterning with extreme ultraviolet laser illumination," Microelectronic Engineering 84, 721-724 (2007).
    6. M. Wei, D. T. Attwood, T. Gustafson, and E. H. Anderson, "Patterning a 50 nm period grating using soft x ray spatial frequency multiplication," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, 3648-3652 (1994).
    7. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solutions," J. Electrochem. Soc 137, 3612-3626 (1990).
    8. S. Tan, M. L. Reed, H. Han, and R. Boudreau, "Mechanisms of etch hillock formation," Microelectromechanical Systems, Journal of 5, 66-72 (1996).
    9. E. Palik, H. Gray, and P. Klein, "A Raman study of etching silicon in aqueous KOH," Journal of the Electrochemical Society 130, 956 (1983).
    10. P. Rai-Choudhury, Handbook of microlithography, micromachining, and microfabrication (Inspec/Iee, 1997).
    11. H. Pfeiffer, "Variable spot shaping for electron beam lithography," Journal of Vacuum Science and Technology 15, 887-890 (1978).
    12. Y. Nakayama, S. Okazaki, N. Saitou, and H. Wakabayashi, "Electron beam cell projection lithography: A new high throughput electron beam direct writing technology using a specially tailored Si aperture," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8, 1836-1840 (1990).
    13. M. Haffner, A. Haug, A. Heeren, M. Fleischer, H. Peisert, T. Chasse, and D. Kern, "Influence of temperature on HSQ electron-beam lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 2045-2048 (2007).
    14. W. Henschel, Y. Georgiev, and H. Kurz, "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, 2018 (2003).
    15. "http://henke.lbl.gov/optical_constants/."
    16. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub 25 nm vias and trenches in polymers," Applied physics letters 67, 3114 (1995).
    17. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, 4129-4133 (1996).
    18. J. H. Chang, and S. Y. Yang, "Gas pressurized hot embossing for transcription of micro-features," Microsystem Technologies 10, 76-80 (2003).
    19. H. Gao, H. Tan, W. Zhang, K. Morton, and S. Y. Chou, "Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field," Nano letters 6, 2438-2441 (2006).
    20. C.-H. Lin, H.-H. Lin, W.-Y. Chen, and T.-C. Cheng, "Direct imprinting on a polycarbonate substrate with a compressed air press for polarizer applications," Microelectronic Engineering 88, 2026-2029 (2011).
    21. H. C. Liou, and J. Pretzer, "Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films," Thin Solid Films 335, 186-191 (1998).
    22. Z. Zhou, "Accurate top-down processing of silicon photonic devices," (2010).
    23. "http://memscyclopedia.org/su8.html."
    24. H. Solak, D. He, W. Li, and F. Cerrina, "Nanolithography using extreme ultraviolet lithography interferometry: 19 nm lines and spaces," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, 3052 (1999).
    25. H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Applied physics letters 75, 2328 (1999).
    26. A. Isoyan, A. Wuest, J. Wallace, F. Jiang, and F. Cerrina, "4X reduction extreme ultraviolet interferometric lithography," Optics Express 16, 9106-9111 (2008).
    27. 劉遠中, "同步輻射光源的建造與發展," 科儀新知 第16卷, 第2期, 4-7 (1994).
    28. 劉遠中, "同步輻射興建回顧," 科儀新知 第19卷, 第2期, 60-65 (1997).
    29. Y. Song, P. C. Tseng, L. R. Huang, S. C. Chung, T. E. Dann, C. Chen, and K. L. Tsang, "Design of an ultra-high resolution and high flux cylindrical grating monochromator undulator beamline," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467, 496-499 (2001).
    30. M. Born, and E. Wolf, Principles of optics (Macmillan, New York, 1964).
    31. K. Eidmann, M. Kuhne, P. Muller, and G. Tsakiris, "Characterization of pinhole transmission gratings," Journal of X-Ray Science and Technology 2, 259-273 (1990).
    32. I. Junarsa, M. P. Stoykovich, P. F. Nealey, Y. Ma, F. Cerrina, and H. H. Solak, "Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 23, 138 (2005).
    33. H. H. Solak, and Y. Ekinci, "Bit-array patterns with density over 1 Tbit/ in. fabricated by extreme ultraviolet interference lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 2123 (2007).
    34. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Optics Express 14, 2323-2334 (2006).
    35. H. H. Solak, "Nanolithography with coherent extreme ultraviolet light," Journal of Physics D: Applied Physics 39, R171 (2006).

    下載圖示 校內:2014-09-05公開
    校外:2014-09-05公開
    QR CODE