簡易檢索 / 詳目顯示

研究生: 呂建良
Lu, Jiang-Liang
論文名稱: 光電化學氧化法之雙異質結構金氧半場效電晶體其電性研究
Investigation and Fabrication of Double-Heterojuction Metal-Oxide-Semiconductor FETs Using Photoelectrochemical oxide Method
指導教授: 李清庭
Lee, Ching-Ting
張允崇
Chang, Yum-Chrong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 53
中文關鍵詞: 電流崩潰雙異質結構光電化學
外文關鍵詞: PEC, heterostructure, current collapse
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是藉由光電化學(PEC)氧化法在氮化鋁鎵上直接成長一低界面態位密度的氧化層,並應用於金氧半場效電晶體元件上。此方法在室溫下、磷酸溶液pH=3.5、外加偏壓1伏特時,沉積速率大約為3 nm/min。在製程中,歐姆金屬為Ti/Al/Pt/Au(25/100/50/200nm)、在RTA氮氣氛圍下、850 ℃、熱處理2分鐘,而所得到的歐姆特徵接觸電阻為7.62×10-6 Ω-cm2。在平台製作方面,本實驗採用活性離子電漿蝕刻(RIE),利用BCl3活性氣體來蝕刻氮化鋁鎵,再利用PECVD成長SiO2做元件隔離。而在MOS-HEMTs閘極尺寸長度為3 um、寬為300 um,當VGS=-1 V,VDS=10 V,我們所得到的最大轉導為53.8 mS/mm,而汲源極飽和電流ID(sat)約為167 mA/mm。接著,我們將比較AlGaN/GaN/AlGaN MOS-HEMTs和HEMTs兩種元件的特性,並且由MOS-HEMTs我們可獲得較小的漏電流,較大的閘極擺盪電壓。

    An oxide layer with low interface trap density has been grew on AlGaN directly by PEC method and applied on metal-oxide-semiconductor field effect transistor. The growth rate is about 3 nm/min in H3PO4 electrolytic solution with pH value of 3.5 and biased at 1 V using PEC oxidation method at room temperature. The deposited metal of ohmic contact are Ti/Al/Pt/Au(25/100/50/200nm), and the specific contact resistance is 7.62×10-6 Ω-cm2. AlGaN is etched by using reactant ion etch system with reactant gas BCl3 in mesa processing, and then deposited SiO2 as isolation by using PECVD. The length and width of MOS-HEMTs is 3 um and 300 um. When VGS=-1 volt and VDS=10 volt, The largest transconductance is 53.8 mS/mm and Drain-Source saturation current ID(sat) is about 167 mA/mm. Then, The characteristic of AlGaN/GaN/AlGaN MOS-HEMTs and HEMTs is compared and the lower leakage current, larger gate swing voltage is observed from MOS-HEMTs.

    目錄 摘要(中文)/I 摘要(英文)/III 目錄/VI 表格說明/VIII 圖表說明/IX 第一章 簡介/1 1-1背景與動機/1 1-2二維電子氣的形成/5 1-3論文架構/11 1-4製程所需之設備及材料/12 Reference/13 第二章 歐姆電極和PEC製程/16 2-1簡介/16 2-2光電化學氧化法原理/18 2-3光電化學氧化法實驗流程/21 2-4不同因素對於歐姆特性的影響/23 2-5熱處理溫度對於歐姆特性的影響/26 2-6總結/28 Reference/29 第三章 AlGaN/GaN/AlGaN MOS-HEMTs製程/31 3-1AlGaN/GaN/AlGaN MOS-HEMTs的元件結構/31 3-2AlGaN/GaN/AlGaN MOS-HEMTs的製作流程/33 3-3總結/37 Reference/40 第四章 AlGaN/GaN/AlGaN MOS-HEMTs的直流特 性/41 4-1簡介/41 4-2AlGaN/GaN/AlGaN MOS-HEMTs的直流特性/42 4-3閘極尺寸對元件的影響/46 4-4AlGaN/GaN/AlGaN MOS-HEMTs的高頻特性/51 第五章 結論/52 5-1結論/52 表格說明 表1-1 幾種材料的特性比較 表1-2 AlGaN、GaN、InN 的壓電極化係數與自發極化係數 表2-1 各種金屬之功函數 表2-2 不同熱處理時間下之特性歐姆阻抗(specific contact resistant) 表4-1 不同尺寸之HEMTs和MOS-HEMTs的比較 表4-2 1 μm × 50 μm之HEMTs的fT與fmax 圖表說明/ 圖1-1 幾種材料的mobility比較圖 圖1-2 Ga-face和N-face的晶體結構圖 圖1-3 PlMBE (Plasma-induced MBE)成長的N-face、mixed polarity、GaN-face與由MOCVD成長的Ga-face surface morphology 圖1-4 (a)Ga-face GaN/AlGaN/GaN structure (b)N-face GaN/AlGaN/GaN structure 圖2-1 n型氮化鋁鎵與液體接觸後的液/半相平衡能帶-空間圖 圖2-2 p型氮化鋁鎵與液體接觸後的液/半相平衡能帶-空間圖 圖2-3 光電化學氧化法之實驗架構圖 圖2-4 試片結構 圖2-5 二維電子氣能帶圖 圖2-6 TLM的元件圖側視圖 圖3-3 試片剖面結構圖 圖3-4 實驗製程流程圖 圖4-1 MOS-HEMTs IDS-VDS電流特性圖 圖4-2 MOS-HEMTs的轉導圖 圖4-3 HEMTs IDS-VDS電流特性圖 圖4-4 HEMTs的轉導曲線圖 圖4-5 MOS-HEMTs的漏電流IGS-VGS圖 圖4-6 HEMTs的漏電流IGS-VGS圖 圖4-7 HEMTs IDS-VDS電流特性圖 圖4-8 HEMTs轉導曲線圖 圖4-9 HEMTs的漏電流IGS-VGS圖 圖4-10 HEMTs IDS-VDS電流特性圖 圖4-11 HEMTs轉導曲線圖 圖4-12 HEMTs的漏電流IGS-VGS圖 圖4-13 1 μm × 50 μm HEMTs之fT與fmax高頻曲線圖

    [1]H. R. Wu, Y. W. Wang, M. P. Houng, ”Liquid Phase Deposited SiO2 on GaN and Its Application to MOSFET”, Thesis For Master of Science, Department of Electrical Engineering, National Cheng Kung University, 2001.

    [2]H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, ”Large-band gap SiC, III-V nitride, and II-VI ZnSe-based Semiconductor device technologies”, J. Appl. Phys., Vol. 76, p.1363, 1994.

    [3]S. T. Sheppard, K. Doverspike, W. L Pribble, S. T Allen, J. Palmour, ”High power microwave GaN/AlGaN HEMTs on silicon carbide”, IEEE Electron. Dev. Lett., Vol. 20, p.161, 1999.

    [4]S. Suihkonen, O. Svensk, “The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency”, J. Cryst. Growth Vol. 298, p.740, 2007.

    [5]S. H. Baek, J. Kim, M. K. Kwon, “Enhanced carrier confinement in AlInGaN-InGaN quantum wells in near ultraviolet light-emitting diodes”, IEEE Photonic Tech. Lett., Vol. 18, p.1276, 2006.

    [6]Akasaki, Isamu, “Key inventions in the history of nitride-based blue LED and LD”, J. Cryst. Growth, Vol. 300 (1): p.2, 2007.

    [7]C. L. Mo, W. Q. Fang, Y. Pu, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD”, J. Cryst. Growth, Vol. 285 (3): p.312, 2005.

    [8]J. I. Pankove, E. A. Miller, J. E. Berkeyheiser, “GaN electroluminescent diodes”, RCA Rev., Vol. 32, p.383, 1971.

    [9]S. J. Pearton, GaN and related Materials, Ch. 1. Gordon and Breach Science Publishers.

    [10]J. Edmond, H. Kong, V. Dmitrieve, “Blue/UV emitters from SiC and its alloys”, List. Phys. Conf. Ser., Vol. 137, p.515, 1994.

    [11]S. J. Pearton, F. Ren, A. P. Zang, K. P. Lee, “Fabrication and performance of GaN electronic devices”, Mater. Sci. Eng., R30 p.55, 2000.

    [12]Y. Uzawa, Z. Wang, A. Osinsky, B. Komiyama, “Submillimeter wave reponses in NbN/AlN/NbN tunnel junctions”, Appl. Phys. Lett., Vol. 66, p.1992, 1995.

    [13]M. A. Kahn, j. N. Kuznia, A. R. Bhattrai, D. T. Olson, “Metal contacts to gallium nitride”, Appl. Phys. Lett., Vol. 62, p.2859,
    1993.
    [14]T. P. Chow, R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans. Electron. Dev., Vol. 41, p.1481, 1994.

    [15]R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan, A. O. Orlov, G.L. Snider, M.S. Shur, “Elecron transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates”, Appl. Phys. Lett. Vol. 74, p.1266, 1999.

    [16] C. K. Wang, R. W. Chuang, S. J. Chang, Y. K. Su, S. C. Wei, T. K. Lin, T. K. Ko, Y. Z. Chiou, J. J. Tang, “High temperature and high frequency characteristics of AlGaN/GaN MOS-HFETs with photochemical vapor deposition SiO2 layer.”, Mater. Sci. and Eng. B, Vol. 119, p.25, 2005.

    [17]O. Ambacher, “Two-dimentional electron gases induced by spontaneous andpiezoelectric polarization charges in N- and Ga-face AlGaN/GaNheterostructures”, J. Appl. Phy., Vol. 85, No. 6, p.3222, 1999.

    [18]R. Dimitrov, “Two-dimentional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam exitaxy and Metalorganic chemical vapor deposition on sapphire”, J. App. Phy., Vol. 87, No. 7, p.3375, 2000.

    [19]H. Morkoc, “GaN-based modulation doped FETs and UV detector”, Solid-State electron., Vol. 46, p.157, 2002.

    [20]O. Ambacher, ”Two dimension electron gases induced by spontaneous and piezoelectric polarization in undoped AlGaN/GaN heterostructures”, J. Appl. Phy., Vol. 87, No. 1, p.334, 2000.

    [21]P. K. Wang, K. O. Schweitz, T. G. Pribicko, S. E. Mohney “Ohmic Contacts to n-type AlGaN and Nitride HEMT Epilayers”, Department of Materials Science and Engineering.

    [22]A . Motayed, R. Bathe, M. C. Wood, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN”, J. Appl. Phy., Vol. 93 No. 2: p.1087, 2003.

    [23]S. Murai, H. Masuda, Y. Koide, “Effect of Pd or Pt addition to Ti/Al ohmic contact materials for n-type AlGaN”, Appl. Phy. Lett., Vol. 80, No. 16: p.2934, 2002.

    [24]N. Maeda, T. Makimura, T. Maruyama, C. Wang, M. Hiroki, H. Yokoyama, T. Makimoto, T. Kobayashi, T. Enoki, “RF and DC characteristics in Al2O3/Si3N4 insulated-gate AlGaN/GaN heterostructure field-effect transistors with regrown ohmic structure”, Phy. Stat. Sol. (a)Vol. 203, No. 7 p.1861, 2006.

    [25]C. T. Lee, H. W. Chen, H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN”, Appl. Phys. Lett., Vol. 82, p.4304, 2003.

    [26]C. T. Lee, H. W. Chen, F. T. Hwang, H. Y. Lee, “Investigation of Ga Oxide Films Directly Grown on n-Type GaN by Photoelectrochemical Oxidation Using He-Cd Laser”, J. Electron. Mater., Vol. 34, No. 3, p.282, 2005.

    [27]N. Saftaa, H. Mejrib, H. Belmabroukc, M.A. Zaidia, “Effects of high doping on the bandgap bowing for AlxGa1-xN”, Microelectronics J., Vol. 37, p.1289, 2006.

    [28]林晉逸,“氮化鋁鎵光致氧化膜在金氧半電容元件之研究, 台灣大學光電工程學研究所, 2002.
    [29]Heterogeneous Photochemical Electron Transfer, edited by M. Gratzel(CRC, Boca Raton FL, 1998).

    [30]L. M. Huygens, K. Strubbe, and W. P. Gomes, “Electrochemistry and photoetching of n-GaN”, J. Electrochem. Soc., Vol. 147, p.1797, 2000.

    [31]S. M. Sze, Physucs of Semiconductor Devices, 2nd ed. New York: Wiley, p.304, 1981.

    [32]C. K. Wang, R. W. Chuang, S. J. Chang, Y. K. Su, S. C. Wei, T. K. Lin, T. K. Ko, Y. Z. Chiou, J. J. Tang, “High temperature and high frequency characteristics of AlGaN/GaN MOS-HEMTs with photochemical vapor deposition SiO2 layer.”, Mater. Sci. and Eng. B, Vol. 119, p.25, 2005.

    下載圖示 校內:2008-09-04公開
    校外:2008-09-04公開
    QR CODE