| 研究生: |
梁軒豪 Liang, Hsuan-Hao |
|---|---|
| 論文名稱: |
PMA誘導THP-1巨噬細胞中Eps8和EGFR表達 The enhancement of Eps8 and EGFR expression in PMA-treated THP-1 macrophages |
| 指導教授: |
呂增宏
Leu, Tzeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 大腸直腸癌 、Eps8 、EGFR 、PKCδ 、腫瘤相關巨噬細胞 |
| 外文關鍵詞: | colorectal cancer, Eps8, EGFR, PKCδ, tumor-associated macrophage |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多種類型的人類癌症中都有發現Epidermal growth factor receptor(EGFR)的突變或過量表達。最近,EGFR被發現會調節腫瘤相關巨噬細胞(TAM)的M1-和M-2-型的極化,並造成肝癌的形成。Epidermal growth factor receptor pathway substrate number 8(Eps8)在癌細胞和巨噬細胞中都扮演很重要的角色。像EGFR一樣,Eps8的表達在許多種癌症中也有升高的現象。此外,Eps8參與巨噬細胞中的LPS-TLR4信號傳導。Protein kinase C(PKC)是一種serine/threonine kinase,可將多種細胞信號傳導與癌症聯繫起來。已經發現,PKCs,特別是PKCδ,在調節巨噬細胞功能中扮演著很重要的作用。在這項研究中,我們想研究在TAM中EGFR-Eps8的途徑是如何被調控的,以及該途徑是否在大腸直腸癌中調控腫瘤的進展。首先,我們利用SW480共培養的THP-1細胞來模擬TAM。我們發現THP-1細胞在經過PMA(一種PKC激活劑)處理後會從單核細胞分化為巨噬細胞。在此過程中,利用PKC抑製劑 Rottlerin,PKCδ siRNA和eps8 siRNA 證明了PKCδ調控Eps8與EGFR的表達以及Eps8參與PKCδ調控EGFR的表現。此外,Src抑製劑可以下調THP-1細胞中EGFR的表達。接下來,我們觀察到經過SW480細胞共培養或與SW480細胞製備的條件培養基一起養時,巨噬細胞中Eps8和EGFR的表達也會提高。我們的研究結果指出PKCδ,Eps8和Src可能介導THP-1細胞中EGFR的表達,而SW480的分泌物也可以誘導這種作用。
Epidermal growth factor receptor (EGFR) mutation or overexpression has been found in several types of human cancer. Recently, EGFR has been implicated in regulating M1- and M-2-type polarization in tumor-associated macrophages (TAMs) and contributes to hepatocellular carcinoma formation. Epidermal growth factor receptor pathway substrate number 8 (Eps8) which plays an important role in cancer cells and macrophages. Like EGFR, Eps8 expression is also elevated in many kinds of cancer. In addition, Eps8 participates in lipopolysaccharide-TLR4 signaling in macrophages. Protein kinase C (PKC) is a serine/threonine kinase which links multiple cell signaling to cancer formation. Among PKCs, PKCδ have been found to play an important role in regulating macrophage function. In this study, we want to investigate how EGFR-Eps8 pathway is regulated in TAMs and whether this pathway regulates tumor progression in colon cancer. In the beginning, we study SW480-co-cultured THP-1 cells to mimic TAMs. First, we found that during THP-1 cells differentiating from monocytes to macrophages by phorbol 12-myristate 13-acetate (a PKC activator) treatment, the expression of EGFR is elevated in PKCδ and Eps8-dependent manner, which was confirmed by PKC inhibitor Rottlerin, PKCδ siRNA and eps8 siRNA. Moreover, Src inhibitor PP2 also could downregulate the expression of EGFR in THP-1 cells. Next, we observed the expression of Eps8 and EGFR in macrophages is elevated by either co-cultured with SW480 cells or incubation with the condition medium prepared from SW480 cells. Importantly, the expression of CD206, a M2-type macrophage marker, also increase in SW480 co-cultured macrophage. Our study indicated that PKCδ, Eps8 and Src might mediate the expression of EGFR in THP-1 cells, and SW480 secretion could induce this effect.
Abraham, D., Zins, K., Sioud, M., Lucas, T., Schäfer, R., Stanley, E. R., & Aharinejad, S. (2010). Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma. Int J Cancer, 126(6), 1339-1352. doi:10.1002/ijc.24859
Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol, 196(3), 254-265. doi:10.1002/path.1027
Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol, 11(10), 889-896. doi:10.1038/ni.1937
Blumberg, P. M. (1988). Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Res, 48(1), 1-8.
Chang, S. S., & Califano, J. (2008). Current status of biomarkers in head and neck cancer. J Surg Oncol, 97(8), 640-643. doi:10.1002/jso.21023
Chen, Y. J., Hsieh, M. Y., Chang, M. Y., Chen, H. C., Jan, M. S., Maa, M. C., & Leu, T. H. (2012). Eps8 protein facilitates phagocytosis by increasing TLR4-MyD88 protein interaction in lipopolysaccharide-stimulated macrophages. J Biol Chem, 287(22), 18806-18819. doi:10.1074/jbc.M112.340935
Chen, Y. J., Shen, M. R., Chen, Y. J., Maa, M. C., & Leu, T. H. (2008). Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol Cancer Ther, 7(6), 1376-1385. doi:10.1158/1535-7163.Mct-07-2388
Citri, A., & Yarden, Y. (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol, 7(7), 505-516. doi:10.1038/nrm1962
Dacic, S. (2008). EGFR assays in lung cancer. Adv Anat Pathol, 15(4), 241-247. doi:10.1097/PAP.0b013e31817bf5a9
De Rosa, M., Pace, U., Rega, D., Costabile, V., Duraturo, F., Izzo, P., & Delrio, P. (2015). Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep, 34(3), 1087-1096. doi:10.3892/or.2015.4108
Duan, Y. T., Bi, K. Y., & Ma, Y. S. (2018). PKC δ gene can induce macrophages to release inflammatory factors against Mycobacterium tuberculosis infection. Eur Rev Med Pharmacol Sci, 22(13), 4228-4237. doi:10.26355/eurrev_201807_15417
Dulai, P. S., Sandborn, W. J., & Gupta, S. (2016). Colorectal Cancer and Dysplasia in Inflammatory Bowel Disease: A Review of Disease Epidemiology, Pathophysiology, and Management. Cancer Prev Res (Phila), 9(12), 887-894. doi:10.1158/1940-6207.Capr-16-0124
Fazioli, F., Minichiello, L., Matoska, V., Castagnino, P., Miki, T., Wong, W. T., & Di Fiore, P. P. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. Embo j, 12(10), 3799-3808.
Ferguson, K. M. (2008). Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys, 37, 353-373. doi:10.1146/annurev.biophys.37.032807.125829
Frederick, L., Wang, X. Y., Eley, G., & James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res, 60(5), 1383-1387.
Fujii, T., García-Bermejo, M. L., Bernabó, J. L., Caamaño, J., Ohba, M., Kuroki, T., . . . Kazanietz, M. G. (2000). Involvement of protein kinase C delta (PKCdelta) in phorbol ester-induced apoptosis in LNCaP prostate cancer cells. Lack of proteolytic cleavage of PKCdelta. J Biol Chem, 275(11), 7574-7582. doi:10.1074/jbc.275.11.7574
Gajewski, T. F., Woo, S. R., Zha, Y., Spaapen, R., Zheng, Y., Corrales, L., & Spranger, S. (2013). Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol, 25(2), 268-276. doi:10.1016/j.coi.2013.02.009
Griner, E. M., & Kazanietz, M. G. (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nature Reviews Cancer, 7(4), 281-294. doi:10.1038/nrc2110
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674. doi:10.1016/j.cell.2011.02.013
Hardbower, D. M., Coburn, L. A., Asim, M., Singh, K., Sierra, J. C., Barry, D. P., . . . Wilson, K. T. (2017). EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis. Oncogene, 36(27), 3807-3819. doi:10.1038/onc.2017.23
Hardbower, D. M., Singh, K., Asim, M., Verriere, T. G., Olivares-Villagómez, D., Barry, D. P., . . . Wilson, K. T. (2016). EGFR regulates macrophage activation and function in bacterial infection. J Clin Invest, 126(9), 3296-3312. doi:10.1172/jci83585
Hashmi, A. A., Naz, S., Hashmi, S. K., Irfan, M., Hussain, Z. F., Khan, E. Y., . . . Faridi, N. (2019). Epidermal growth factor receptor (EGFR) overexpression in triple-negative breast cancer: association with clinicopathologic features and prognostic parameters. Surgical and Experimental Pathology, 2(1), 6. doi:10.1186/s42047-018-0029-0
Henze, A. T., & Mazzone, M. (2016). The impact of hypoxia on tumor-associated macrophages. J Clin Invest, 126(10), 3672-3679. doi:10.1172/jci84427
Jang, J. H., Kim, D. H., Lim, J. M., Lee, J. W., Jeong, S. J., Kim, K. P., & Surh, Y. J. (2020). Breast Cancer Cell-Derived Soluble CD44 Promotes Tumor Progression by Triggering Macrophage IL1β Production. Cancer Res, 80(6), 1342-1356. doi:10.1158/0008-5472.Can-19-2288
Johnson, A. C., Murphy, B. A., Matelis, C. M., Rubinstein, Y., Piebenga, E. C., Akers, L. M., . . . Birrer, M. (2000). Activator protein-1 mediates induced but not basal epidermal growth factor receptor gene expression. Mol Med, 6(1), 17-27.
Lanaya, H., Natarajan, A., Komposch, K., Li, L., Amberg, N., Chen, L., . . . Sibilia, M. (2014). EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat Cell Biol, 16(10), 972-977. doi:10.1038/ncb3031
Lanzetti, L., Rybin, V., Malabarba, M. G., Christoforidis, S., Scita, G., Zerial, M., & Di Fiore, P. P. (2000). The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature, 408(6810), 374-377. doi:10.1038/35042605
Lasry, A., Zinger, A., & Ben-Neriah, Y. (2016). Inflammatory networks underlying colorectal cancer. Nat Immunol, 17(3), 230-240. doi:10.1038/ni.3384
Li, N., Du, Z. X., Zong, Z. H., Liu, B. Q., Li, C., Zhang, Q., & Wang, H. Q. (2013). PKCδ-mediated phosphorylation of BAG3 at Ser187 site induces epithelial−mesenchymal transition and enhances invasiveness in thyroid cancer FRO cells. Oncogene, 32(38), 4539-4548. doi:10.1038/onc.2012.466
Liu, C., Yao, Z., Wang, J., Zhang, W., Yang, Y., Zhang, Y., . . . Du, Q. (2020). Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway. Cell Death Differ, 27(6), 1765-1781. doi:10.1038/s41418-019-0460-0
Liu, P. S., Jong, T. H., Maa, M. C., & Leu, T. H. (2010). The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene, 29(27), 3977-3989. doi:10.1038/onc.2010.144
Maa, M. C., Hsieh, C. Y., & Leu, T. H. (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene, 20(1), 106-112. doi:10.1038/sj.onc.1204069
Maa, M. C., Lai, J. R., Lin, R. W., & Leu, T. H. (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta, 1450(3), 341-351. doi:10.1016/s0167-4889(99)00069-5
Maa, M. C., Lee, J. C., Chen, Y. J., Chen, Y. J., Lee, Y. C., Wang, S. T., . . . Leu, T. H. (2007). Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem, 282(27), 19399-19409. doi:10.1074/jbc.M610280200
Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 23(11), 549-555. doi:10.1016/s1471-4906(02)02302-5
Mauro, L. V., Grossoni, V. C., Urtreger, A. J., Yang, C., Colombo, L. L., Morandi, A., . . . Puricelli, L. L. (2010). PKC Delta (PKCdelta) promotes tumoral progression of human ductal pancreatic cancer. Pancreas, 39(1), e31-41. doi:10.1097/MPA.0b013e3181bce796
Mitsudomi, T., & Yatabe, Y. (2010). Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. Febs j, 277(2), 301-308. doi:10.1111/j.1742-4658.2009.07448.x
Nakagawa, M., Oliva, J. L., Kothapalli, D., Fournier, A., Assoian, R. K., & Kazanietz, M. G. (2005). Phorbol ester-induced G1 phase arrest selectively mediated by protein kinase Cdelta-dependent induction of p21. J Biol Chem, 280(40), 33926-33934. doi:10.1074/jbc.M505748200
Parihar, S. P., Ozturk, M., Marakalala, M. J., Loots, D. T., Hurdayal, R., Maasdorp, D. B., . . . Brombacher, F. (2018). Protein kinase C-delta (PKCδ), a marker of inflammation and tuberculosis disease progression in humans, is important for optimal macrophage killing effector functions and survival in mice. Mucosal Immunology, 11(2), 496-511. doi:10.1038/mi.2017.68
Pines, G., Köstler, W. J., & Yarden, Y. (2010). Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett, 584(12), 2699-2706. doi:10.1016/j.febslet.2010.04.019
Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39-51. doi:10.1016/j.cell.2010.03.014
Quatromoni, J. G., & Eruslanov, E. (2012). Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res, 4(4), 376-389.
Ruffell, B., Affara, N. I., & Coussens, L. M. (2012). Differential macrophage programming in the tumor microenvironment. Trends Immunol, 33(3), 119-126. doi:10.1016/j.it.2011.12.001
Runa, F., Hamalian, S., Meade, K., Shisgal, P., Gray, P. C., & Kelber, J. A. (2017). Tumor microenvironment heterogeneity: challenges and opportunities. Curr Mol Biol Rep, 3(4), 218-229. doi:10.1007/s40610-017-0073-7
Satia, J. A., Tseng, M., Galanko, J. A., Martin, C., & Sandler, R. S. (2009). Dietary patterns and colon cancer risk in Whites and African Americans in the North Carolina Colon Cancer Study. Nutr Cancer, 61(2), 179-193. doi:10.1080/01635580802419806
Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell, 103(2), 211-225. doi:10.1016/s0092-8674(00)00114-8
Schwegmann, A., Guler, R., Cutler, A. J., Arendse, B., Horsnell, W. G., Flemming, A., . . . Brombacher, F. (2007). Protein kinase C delta is essential for optimal macrophage-mediated phagosomal containment of Listeria monocytogenes. Proc Natl Acad Sci U S A, 104(41), 16251-16256. doi:10.1073/pnas.0703496104
Schwende, H., Fitzke, E., Ambs, P., & Dieter, P. (1996). Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol, 59(4), 555-561.
Spano, J. P., Fagard, R., Soria, J. C., Rixe, O., Khayat, D., & Milano, G. (2005). Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann Oncol, 16(2), 189-194. doi:10.1093/annonc/mdi057
Tjiu, J. W., Chen, J. S., Shun, C. T., Lin, S. J., Liao, Y. H., Chu, C. Y., . . . Jee, S. H. (2009). Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol, 129(4), 1016-1025. doi:10.1038/jid.2008.310
Vinogradov, S., Warren, G., & Wei, X. (2014). Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine (Lond), 9(5), 695-707. doi:10.2217/nnm.14.13
Wang, W., Wyckoff, J. B., Frohlich, V. C., Oleynikov, Y., Hüttelmaier, S., Zavadil, J., . . . Condeelis, J. S. (2002). Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res, 62(21), 6278-6288.
Yang, C. C., Lin, C. C., Hsiao, L. D., Kuo, J. M., Tseng, H. C., & Yang, C. M. (2019). Lipopolysaccharide-Induced Matrix Metalloproteinase-9 Expression Associated with Cell Migration in Rat Brain Astrocytes. Int J Mol Sci, 21(1). doi:10.3390/ijms21010259
Yang, G., Lu, Y. B., & Guan, Q. L. (2019). EPS8 is a Potential Oncogene in Glioblastoma. Onco Targets Ther, 12, 10523-10534. doi:10.2147/ott.S227739
Zhang, M., He, Y., Sun, X., Li, Q., Wang, W., Zhao, A., & Di, W. (2014). A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res, 7, 19. doi:10.1186/1757-2215-7-19
Yu, chen Pan. (2014). The role of Eps8 in macrophage-stimulated colon cancer cell migration
Zhang, Q. W., Liu, L., Gong, C. Y., Shi, H. S., Zeng, Y. H., Wang, X. Z., . . . Wei, Y. Q. (2012). Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One, 7(12), e50946. doi:10.1371/journal.pone.0050946
Zhao, M., Xia, L., & Chen, G. Q. (2012). Protein kinase cδ in apoptosis: a brief overview. Arch Immunol Ther Exp (Warsz), 60(5), 361-372. doi:10.1007/s00005-012-0188-8